BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12714367)

  • 1. Spring wheat leaf appearance and temperature: extending the paradigm?
    McMaster GS; Wilhelm WW; Palic DB; Porter JR; Jamieson PD
    Ann Bot; 2003 May; 91(6):697-705. PubMed ID: 12714367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Two-phase linear models of leaf emergence at different tillering positions in wheat and effects of different varieties and sowing dates].
    Cao W; Li C; Yan M; Zou W
    Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):369-72. PubMed ID: 11767634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-ordination between leaf initiation and leaf appearance in field-grown maize (Zea mays): genotypic differences in response of rates to temperature.
    Padilla JM; Otegui ME
    Ann Bot; 2005 Nov; 96(6):997-1007. PubMed ID: 16126778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Photosynthetic gas exchange and water utilization of flag leaf of spring wheat with bunch sowing and field plastic mulching below soil on semi-arid rain-fed area.].
    Yang WX; Liu N; Liu XH; Zhang XT; Wang SH; Yuan JX; Zhang XC
    Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2264-2272. PubMed ID: 29737135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and modeling evidence of carbon limitation of leaf appearance rate for spring and winter wheat.
    Baumont M; Parent B; Manceau L; Brown HE; Driever SM; Muller B; Martre P
    J Exp Bot; 2019 Apr; 70(9):2449-2462. PubMed ID: 30785619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling light and temperature effects on leaf emergence in wheat and barley.
    Volk T; Bugbee B
    Crop Sci; 1991; 31(5):1218-24. PubMed ID: 11537630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating a chronology response into the prediction of leaf appearance rate in winter wheat.
    Streck NA; Weiss A; Xue Q; Baenziger PS
    Ann Bot; 2003 Aug; 92(2):181-90. PubMed ID: 12805081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes.
    Duan T; Chapman SC; Holland E; Rebetzke GJ; Guo Y; Zheng B
    J Exp Bot; 2016 Aug; 67(15):4523-34. PubMed ID: 27312669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of nitrogen application on canopy vertical structure, grain-leaf ratio and economic benefit of winter wheat under drip irrigation.].
    Zhang N; Xu WX; Li LH; Wu NP; Wu PJ; Cheng XF
    Ying Yong Sheng Tai Xue Bao; 2016 Aug; 27(8):2491-2498. PubMed ID: 29733135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the Vernalization locus Vrn-A1 in wheat (Triticum aestivum L. em Thell).
    Limin AE; Fowler DB
    Ann Bot; 2002 May; 89(5):579-85. PubMed ID: 12099532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of increasng field temperature on growth, development and yield of spring wheat in semi-arid area].
    Zhang K; Wang RY; Wang HL; Zhao H; Zhao FN; Yang FL; Lei J
    Ying Yong Sheng Tai Xue Bao; 2015 Sep; 26(9):2681-8. PubMed ID: 26785549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon sequestration in dryland soils and plant residue as influenced by tillage and crop rotation.
    Sainju UM; Lenssen A; Caesar-Thonthat T; Waddell J
    J Environ Qual; 2006; 35(4):1341-7. PubMed ID: 16825454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in time of sowing, flowering and maturity of cereals in Europe under climate change.
    Olesen JE; Børgesen CD; Elsgaard L; Palosuo T; Rötter RP; Skjelvåg AO; Peltonen-Sainio P; Börjesson T; Trnka M; Ewert F; Siebert S; Brisson N; Eitzinger J; van Asselt ED; Oberforster M; van der Fels-Klerx HJ
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1527-42. PubMed ID: 22934894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phyllochron of well-watered and water deficit mature peach trees varies with shoot type and vigour.
    Davidson A; Da Silva D; DeJong TM
    AoB Plants; 2017 Sep; 9(5):plx042. PubMed ID: 29026512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability of phyllochron, plastochron and rate of increase in height in photoperiod-sensitive sorghum varieties.
    Clerget B; Dingkuhn M; Gozé E; Rattunde HF; Ney B
    Ann Bot; 2008 Mar; 101(4):579-94. PubMed ID: 18230624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality.
    Pandey AK; Ghosh A; Agrawal M; Agrawal SB
    Ecotoxicol Environ Saf; 2018 Aug; 158():59-68. PubMed ID: 29656165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf emergence of spring wheat receiving varying nitrogen supply at different stages of development.
    Longnecker N; Robson A
    Ann Bot; 1994 Jul; 74(1):1-7. PubMed ID: 19700456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early competition shapes maize whole-plant development in mixed stands.
    Zhu J; Vos J; van der Werf W; van der Putten PE; Evers JB
    J Exp Bot; 2014 Feb; 65(2):641-53. PubMed ID: 24307719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources of sulphur in rain collected below a wheat canopy.
    Raybould CC; Unsworth MH; Gregory PJ
    Nature; 1977 May; 267(5607):146-7. PubMed ID: 16073422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and temporal quantitative analysis of cell division and elongation rate in growing wheat leaves under saline conditions.
    Hu Y; Schmidhalter U
    J Integr Plant Biol; 2008 Jan; 50(1):76-83. PubMed ID: 18666954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.