BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12714370)

  • 1. Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients.
    Van Dongen JT; Ammerlaan AM; Wouterlood M; Van Aelst AC; Borstlap AC
    Ann Bot; 2003 May; 91(6):729-37. PubMed ID: 12714370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrodiffusional uptake of organic cations by pea seed coats. Further evidence for poorly selective pores in the plasma membrane of seed coat parenchyma cells.
    van Dongen JT; Laan RG; Wouterlood M; Borstlap AC
    Plant Physiol; 2001 Aug; 126(4):1688-97. PubMed ID: 11500566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons.
    Rosche E; Blackmore D; Tegeder M; Richardson T; Schroeder H; Higgins TJ; Frommer WB; Offler CE; Patrick JW
    Plant J; 2002 Apr; 30(2):165-75. PubMed ID: 12000453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of pea biomass and seed productivity by simultaneous increase of phloem and embryo loading with amino acids.
    Zhang L; Garneau MG; Majumdar R; Grant J; Tegeder M
    Plant J; 2015 Jan; 81(1):134-46. PubMed ID: 25353986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sucrose transport into developing seeds of Pisum sativum L.
    Tegeder M; Wang XD; Frommer WB; Offler CE; Patrick JW
    Plant J; 1999 Apr; 18(2):151-61. PubMed ID: 10363367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds.
    Ferraro K; Jin AL; Nguyen TD; Reinecke DM; Ozga JA; Ro DK
    BMC Plant Biol; 2014 Sep; 14():238. PubMed ID: 25928382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of source-to-sink transport of methionine in establishing seed protein quantity and quality in legumes.
    Garneau MG; Lu MZ; Grant J; Tegeder M
    Plant Physiol; 2021 Dec; 187(4):2134-2155. PubMed ID: 34618032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Members of the aquaporin family in the developing pea seed coat include representatives of the PIP, TIP, and NIP subfamilies.
    Schuurmans JA; van Dongen JT; Rutjens BP; Boonman A; Pieterse CM; Borstlap AC
    Plant Mol Biol; 2003 Nov; 53(5):633-45. PubMed ID: 15010602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunolocalization of pectic polysaccharides during abscission in pea seeds (Pisum sativum L.) and in abscission less def pea mutant seeds.
    Lee Y; Ayeh KO; Ambrose M; Hvoslef-Eide AK
    BMC Res Notes; 2016 Aug; 9(1):427. PubMed ID: 27581466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools.
    Lu MZ; Snyder R; Grant J; Tegeder M
    Plant J; 2020 Jan; 101(1):217-236. PubMed ID: 31520495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pea seed mutant affected in the differentiation of the embryonic epidermis is impaired in embryo growth and seed maturation.
    Borisjuk L; Wang TL; Rolletschek H; Wobus U; Weber H
    Development; 2002 Apr; 129(7):1595-607. PubMed ID: 11923197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anatomy and Histochemistry of Seed Coat Development of Wild (
    Zablatzká L; Balarynová J; Klčová B; Kopecký P; Smýkal P
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33925728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.
    Niemann S; Burghardt M; Popp C; Riederer M
    Plant Cell Environ; 2013 May; 36(5):1027-36. PubMed ID: 23146121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds.
    Borisjuk L; Rolletschek H; Wobus U; Weber H
    J Exp Bot; 2003 Jan; 54(382):503-12. PubMed ID: 12508061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific regulation of gibberellin biosynthesis in developing pea seeds.
    Nadeau CD; Ozga JA; Kurepin LV; Jin A; Pharis RP; Reinecke DM
    Plant Physiol; 2011 Jun; 156(2):897-912. PubMed ID: 21482633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoenolpyruvate carboxykinase in developing pea seeds is associated with tissues involved in solute transport and is nitrogen-responsive.
    Delgado-Alvarado A; Walker RP; Leegood RC
    Plant Cell Environ; 2007 Feb; 30(2):225-35. PubMed ID: 17238913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquaporins and unloading of phloem-imported water in coats of developing bean seeds.
    Zhou Y; Setz N; Niemietz C; Qu H; Offler CE; Tyerman SD; Patrick JW
    Plant Cell Environ; 2007 Dec; 30(12):1566-77. PubMed ID: 17927694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phloem unloading in developing seeds ofVicia faba L. : The effect of several inhibititors on the release of sucrose and amino acids by the seed coat.
    Wolswinkel P; Ammerlaan A
    Planta; 1983 May; 158(3):205-15. PubMed ID: 24264609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression.
    Weber H; Borisjuk L; Heim U; Buchner P; Wobus U
    Plant Cell; 1995 Nov; 7(11):1835-46. PubMed ID: 8535137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonselective currents and channels in plasma membranes of protoplasts from coats of developing seeds of bean.
    Zhang WH; Skerrett M; Walker NA; Patrick JW; Tyerman SD
    Plant Physiol; 2002 Feb; 128(2):388-99. PubMed ID: 11842143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.