These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 12714676)

  • 1. Deformation twinning in nanocrystalline aluminum.
    Chen M; Ma E; Hemker KJ; Sheng H; Wang Y; Cheng X
    Science; 2003 May; 300(5623):1275-7. PubMed ID: 12714676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2002 Sep; 1(1):45-8. PubMed ID: 12618848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films.
    Rajagopalan J; Han JH; Saif MT
    Science; 2007 Mar; 315(5820):1831-4. PubMed ID: 17395826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation induced microtwins and stacking faults in aluminum single crystal.
    Han WZ; Cheng GM; Li SX; Wu SD; Zhang ZF
    Phys Rev Lett; 2008 Sep; 101(11):115505. PubMed ID: 18851297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grain boundary-mediated plasticity in nanocrystalline nickel.
    Shan Z; Stach EA; Wiezorek JM; Knapp JA; Follstaedt DM; Mao SX
    Science; 2004 Jul; 305(5684):654-7. PubMed ID: 15286368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2004 Jan; 3(1):43-7. PubMed ID: 14704784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals.
    Wu XL; Liao XZ; Srinivasan SG; Zhou F; Lavernia EJ; Valiev RZ; Zhu YT
    Phys Rev Lett; 2008 Mar; 100(9):095701. PubMed ID: 18352724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A maximum in the strength of nanocrystalline copper.
    Schiøtz J; Jacobsen KW
    Science; 2003 Sep; 301(5638):1357-9. PubMed ID: 12958354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A crossover in the mechanical response of nanocrystalline ceramics.
    Szlufarska I; Nakano A; Vashishta P
    Science; 2005 Aug; 309(5736):911-4. PubMed ID: 16081730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.
    Kobler A; Kashiwar A; Hahn H; Kübel C
    Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh strength in nanocrystalline materials under shock loading.
    Bringa EM; Caro A; Wang Y; Victoria M; McNaney JM; Remington BA; Smith RF; Torralva BR; Van Swygenhoven H
    Science; 2005 Sep; 309(5742):1838-41. PubMed ID: 16166512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The critical role of grain orientation and applied stress in nanoscale twinning.
    McCabe RJ; Beyerlein IJ; Carpenter JS; Mara NA
    Nat Commun; 2014 May; 5():3806. PubMed ID: 24811868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plastic deformation with reversible peak broadening in nanocrystalline nickel.
    Budrovic Z; Van Swygenhoven H; Derlet PM; Van Petegem S; Schmitt B
    Science; 2004 Apr; 304(5668):273-6. PubMed ID: 15073373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stacking fault energies and slip in nanocrystalline metals.
    Van Swygenhoven H; Derlet PM; Frøseth AG
    Nat Mater; 2004 Jun; 3(6):399-403. PubMed ID: 15156199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation crossover: from nano- to mesoscale.
    Cheng S; Stoica AD; Wang XL; Ren Y; Almer J; Horton JA; Liu CT; Clausen B; Brown DW; Liaw PK; Zuo L
    Phys Rev Lett; 2009 Jul; 103(3):035502. PubMed ID: 19659294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ TEM study of grain growth in nanocrystalline copper thin films.
    Simões S; Calinas R; Vieira MT; Vieira MF; Ferreira PJ
    Nanotechnology; 2010 Apr; 21(14):145701. PubMed ID: 20215662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High tensile ductility in a nanostructured metal.
    Wang Y; Chen M; Zhou F; Ma E
    Nature; 2002 Oct; 419(6910):912-5. PubMed ID: 12410306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrodeformation Twins in Single-Crystal Aluminum.
    Zhao F; Wang L; Fan D; Bie BX; Zhou XM; Suo T; Li YL; Chen MW; Liu CL; Qi ML; Zhu MH; Luo SN
    Phys Rev Lett; 2016 Feb; 116(7):075501. PubMed ID: 26943543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EBSD for analysing the twinning microstructure in fine-grained TWIP steels and its influence on work hardening.
    Barbier D; Gey N; Bozzolo N; Allain S; Humbert M
    J Microsc; 2009 Jul; 235(1):67-78. PubMed ID: 19566628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of stacking faults and the screw dislocation-driven growth: a case study of aluminum nitride nanowires.
    Meng F; Estruga M; Forticaux A; Morin SA; Wu Q; Hu Z; Jin S
    ACS Nano; 2013 Dec; 7(12):11369-78. PubMed ID: 24295225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.