These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Molecular aspects of tactoid formation in man and animals. Murayama M Ann N Y Acad Sci; 1974 Nov; 241(0):623-37. PubMed ID: 4530686 [No Abstract] [Full Text] [Related]
3. Sickle cell hemoglobin: molecular basis of sickling phenomenon theory and therapy. Murayama M CRC Crit Rev Biochem; 1973 Sep; 1(4):461-99. PubMed ID: 4594860 [No Abstract] [Full Text] [Related]
4. Studies on abnormal hemoglobins. VI. Electrophoretic demonstration of type S (sickle cell) hemoglobin in erythrocytes incapable of showing the sickle cell phenomenon. SINGER K; FISHER B Blood; 1953 Mar; 8(3):270-5. PubMed ID: 13032196 [No Abstract] [Full Text] [Related]
5. Oblique alignment of hemoglobin S fibers in sickled cells. Edelstein SJ; Crepeau RH J Mol Biol; 1979 Nov; 134(4):851-5. PubMed ID: 537079 [No Abstract] [Full Text] [Related]
6. Studies on abnormal hemoglobins. III. The interrelationship of type S (sickle cell) hemoglobin and type F (alkali resistant) hemoglobin in sickle cell anemia. SINGER K; CHERNOFF AI Blood; 1952 Jan; 7(1):47-52. PubMed ID: 14886409 [No Abstract] [Full Text] [Related]
7. Molecular aspects of sickle cell disease. Waterman MR; Cottam GL Angew Chem Int Ed Engl; 1976 Dec; 15(12):749-57. PubMed ID: 189639 [No Abstract] [Full Text] [Related]
8. Effect of pH, carbamylation and other hemoglobins on deoxyhemoglobin S aggregation inside intact erythrocytes as detected by proton relaxation rate measurements. Chuang AH; Waterman MR; Yamaoka K; Cottam L Arch Biochem Biophys; 1975 Mar; 167(1):145-50. PubMed ID: 236726 [No Abstract] [Full Text] [Related]
9. A temperature-dependent latent-period in the aggregation of sickle-cell deoxyhemoglobin. Malfa R; Steinhardt J Biochem Biophys Res Commun; 1974 Aug; 59(3):887-93. PubMed ID: 4411783 [No Abstract] [Full Text] [Related]
10. Evaluation of the water environments in deoxygenated sickle cells by longitudinal and transverse water proton relaxation rates. Thompson BC; Waterman MR; Cottam GL Arch Biochem Biophys; 1975 Jan; 166(1):193-200. PubMed ID: 1122135 [No Abstract] [Full Text] [Related]
11. Interactions between human hemoglobins: sickling and related phenomena. Bookchin RM; Nagel RL Semin Hematol; 1974 Oct; 11(4):577-95. PubMed ID: 4608956 [No Abstract] [Full Text] [Related]
12. Intermolecular contacts of deoxyhemoblogin S: a hypothesis and search for possible anti-sickling agents. Yang JT Biochem Biophys Res Commun; 1975 Mar; 63(1):232-8. PubMed ID: 1125014 [No Abstract] [Full Text] [Related]
13. Ultrastructural features of erythrocyte and hemoglobin sickling. White JG Arch Intern Med; 1974 Apr; 133(4):545-62. PubMed ID: 4594393 [No Abstract] [Full Text] [Related]
14. The solubility of hemoglobin beta 4 S, the mutant subunits of sickle cell hemoglobin. Benesch R; Benesch RE; Yung S Biochem Biophys Res Commun; 1973 Nov; 55(2):261-5. PubMed ID: 4767302 [No Abstract] [Full Text] [Related]
15. Studies on the mechanism of action of cyanate in sickle cell disease. Oxygen affinity and gelling properties of hemoglobin S carbamylated on specific chains. Nigen AM; Njikam N; Lee CK; Manning JM J Biol Chem; 1974 Oct; 249(20):6611-6. PubMed ID: 4421180 [No Abstract] [Full Text] [Related]
16. Conformational requirements for the polymerization of hemoglobin S: studies of mixed liganded hybrids. Bookchin RM; Nagel RL J Mol Biol; 1973 May; 76(2):233-9. PubMed ID: 4724318 [No Abstract] [Full Text] [Related]
17. Fibers, crystals, and other forms of HbS polymers in deoxygenated sickle erythrocytes. Kaperonis AA; Handley DA; Chien S Am J Hematol; 1986 Mar; 21(3):269-75. PubMed ID: 3946409 [TBL] [Abstract][Full Text] [Related]