These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 1271472)

  • 1. The interrelationship of calcium-mediated action potentials and tension development in cat ventricular myocardium.
    Tritthart H; Volkmann R; Weiss R; Eibach H
    J Mol Cell Cardiol; 1976 Apr; 8(4):249-61. PubMed ID: 1271472
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the inhibitory effect of verapamil on the slow inward current in mammalian ventricular myocardium.
    Kohlhardt M; Mnich Z
    J Mol Cell Cardiol; 1978 Nov; 10(11):1037-52. PubMed ID: 722800
    [No Abstract]   [Full Text] [Related]  

  • 3. Possible mechanism of rate-dependent change of contraction in dog ventricular muscle: relation to calcium movements.
    Saeki Y; Kamiyama A
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():131-5. PubMed ID: 1031922
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition of calcium-dependent action potentials in mammalian myocardium by specific inhibitors of the transmembrane calcium conductivity (verapamil, D 600).
    Tritthart H; Volkmann R; Weiss R; Fleckenstein A
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():27-33. PubMed ID: 1188159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine increases resting membrane potassium conductance in atrial but not in ventricular muscle during muscarinic inhibition of Ca++-dependent action potentials in chick heart.
    Inoue D; Hachisu M; Pappano AJ
    Circ Res; 1983 Aug; 53(2):158-67. PubMed ID: 6883643
    [No Abstract]   [Full Text] [Related]  

  • 6. Calcium induced reversible alterations in excitation-contraction coupling in verapamil treated rat myocardium.
    Capasso JM
    J Mol Cell Cardiol; 1985 Mar; 17(3):275-83. PubMed ID: 3837826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The inotropic action of adrenaline on cardiac muscle: does it relax or potentiate tension?
    Morad M; Weiss J; Cleemann L
    Eur J Cardiol; 1978 Jun; 7 Suppl():53-62. PubMed ID: 668768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of verapamil and paired-pulse stimulation on mammalian ventricle.
    Wiggins JR; Leary JM; Cranefield PF
    Eur J Cardiol; 1975 Oct; 3(3):181-5. PubMed ID: 810354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inotropic and electrophysiological actions of verapamil and D 600 in mammalian myocardium. III. Effects of the optical isomers on transmembrane action potentials.
    Bayer R; Kalusche D; Kaufmann R; Mannhold R
    Naunyn Schmiedebergs Arch Pharmacol; 1975; 290(1):81-97. PubMed ID: 1178071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fourth class of anti-dysrhythmic action? Effect of verapamil on ouabain toxicity, on atrial and ventricular intracellular potentials, and on other features of cardiac function.
    Singh BN
    Cardiovasc Res; 1972 Mar; 6(2):109-19. PubMed ID: 5034226
    [No Abstract]   [Full Text] [Related]  

  • 11. An analysis of the postnatal development of the action potential repolarization process in the working ventricular myocardium of albino rats (effect of tea, frequency, verapamil and adrenaline).
    Pucelík P; Králícek P; Barták F; Jezek K
    Physiol Bohemoslov; 1983; 32(5):419-29. PubMed ID: 6316383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of thiopental on tension development, action potential, and exchange of calcium and potassium in rabbit ventricular myocardium.
    Frankl WS; Poole-Wilson PA
    J Cardiovasc Pharmacol; 1981; 3(3):554-65. PubMed ID: 6168836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Papaverine blockade of an inward slow Ca2+ current in guinea pig heart.
    Schneider JA; Brooker G; Sperelakis N
    J Mol Cell Cardiol; 1975 Nov; 7(11):867-76. PubMed ID: 173857
    [No Abstract]   [Full Text] [Related]  

  • 14. Pharmacology of peripheral type benzodiazepine receptors in the heart.
    Le Fur G; Mestre M; Carriot T; Belin C; Renault C; Dubroeucq MC; Guérémy C; Uzan A
    Prog Clin Biol Res; 1985; 192():175-86. PubMed ID: 3001750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical activity in superfused cells isolated from adult rat ventricular myocardium [proceedings].
    Powell T; Terrar DA; Twist VW
    J Physiol; 1978 Nov; 284():148P. PubMed ID: 731493
    [No Abstract]   [Full Text] [Related]  

  • 16. Calcium ion effects on the rising phases of action potentials obtained from guinea-pig papillary muscles at different potassium concentrations.
    Windisch H; Tritthart HA
    J Mol Cell Cardiol; 1981 May; 13(5):457-69. PubMed ID: 7265255
    [No Abstract]   [Full Text] [Related]  

  • 17. Ventricular dysrhythmia: membrane basis or of currents, channels, gates, and cables.
    Ten Eick RE; Baumgarten CM; Singer DH
    Prog Cardiovasc Dis; 1981; 24(2):157-88. PubMed ID: 6270730
    [No Abstract]   [Full Text] [Related]  

  • 18. Regional sensitivity to verapamil in ventricular myocardium.
    Cameron JS; Wong SS; Gaide MS; Myerburg RJ; Epstein K; Bassett AL
    Eur J Pharmacol; 1983 Jun; 90(2-3):283-7. PubMed ID: 6873186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative and positive inotropic action of vanadate on atrial and ventricular myocardium.
    Borchard U; Fox AA; Greeff K; Schlieper P
    Nature; 1979 May; 279(5711):339-41. PubMed ID: 221827
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies of energy transport in heart cells. Intracellular creatine content as a regulatory factor of frog heart energetics and force of contraction.
    Saks VA; Rosenshtraukh LV; Undrovinas AI; Smirnov VN; Chazov EI
    Biochem Med; 1976 Aug; 16(1):21-36. PubMed ID: 1087559
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.