These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12714731)

  • 1. Biochemistry. An overoxidation journey with a return ticket.
    Georgiou G; Masip L
    Science; 2003 Apr; 300(5619):592-4. PubMed ID: 12714731
    [No Abstract]   [Full Text] [Related]  

  • 2. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling.
    Wood ZA; Poole LB; Karplus PA
    Science; 2003 Apr; 300(5619):650-3. PubMed ID: 12714747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation.
    Woo HA; Chae HZ; Hwang SC; Yang KS; Kang SW; Kim K; Rhee SG
    Science; 2003 Apr; 300(5619):653-6. PubMed ID: 12714748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway.
    Vivancos AP; Castillo EA; Biteau B; Nicot C; Ayté J; Toledano MB; Hidalgo E
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8875-80. PubMed ID: 15956211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
    Biteau B; Labarre J; Toledano MB
    Nature; 2003 Oct; 425(6961):980-4. PubMed ID: 14586471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases.
    Poole LB
    Arch Biochem Biophys; 2005 Jan; 433(1):240-54. PubMed ID: 15581580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics.
    Hugo M; Turell L; Manta B; Botti H; Monteiro G; Netto LE; Alvarez B; Radi R; Trujillo M
    Biochemistry; 2009 Oct; 48(40):9416-26. PubMed ID: 19737009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs.
    Stöcker S; Van Laer K; Mijuskovic A; Dick TP
    Antioxid Redox Signal; 2018 Mar; 28(7):558-573. PubMed ID: 28587525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation.
    Claiborne A; Yeh JI; Mallett TC; Luba J; Crane EJ; Charrier V; Parsonage D
    Biochemistry; 1999 Nov; 38(47):15407-16. PubMed ID: 10569923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The peroxiredoxin Tpx1 is essential as a H2O2 scavenger during aerobic growth in fission yeast.
    Jara M; Vivancos AP; Calvo IA; Moldón A; Sansó M; Hidalgo E
    Mol Biol Cell; 2007 Jun; 18(6):2288-95. PubMed ID: 17409354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite.
    Peshenko IV; Shichi H
    Free Radic Biol Med; 2001 Aug; 31(3):292-303. PubMed ID: 11461766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sulfinic acid switch in proteins.
    Jacob C; Holme AL; Fry FH
    Org Biomol Chem; 2004 Jul; 2(14):1953-6. PubMed ID: 15254616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the native cysteine-sulfenic acid redox center of enterococcal NADH peroxidase refined at 2.8 A resolution.
    Yeh JI; Claiborne A; Hol WG
    Biochemistry; 1996 Aug; 35(31):9951-7. PubMed ID: 8756456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 13C NMR analysis of the cysteine-sulfenic acid redox center of enterococcal NADH peroxidase.
    Crane EJ; Vervoort J; Claiborne A
    Biochemistry; 1997 Jul; 36(28):8611-8. PubMed ID: 9214307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Typical 2-Cys peroxiredoxins--modulation by covalent transformations and noncovalent interactions.
    Aran M; Ferrero DS; Pagano E; Wolosiuk RA
    FEBS J; 2009 May; 276(9):2478-93. PubMed ID: 19476489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale Modeling of Thiol Overoxidation in Peroxiredoxins by Hydrogen Peroxide.
    Semelak JA; Battistini F; Radi R; Trujillo M; Zeida A; Estrin DA
    J Chem Inf Model; 2020 Feb; 60(2):843-853. PubMed ID: 31718175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein sulfenic acids in redox signaling.
    Poole LB; Karplus PA; Claiborne A
    Annu Rev Pharmacol Toxicol; 2004; 44():325-47. PubMed ID: 14744249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peroxide-mediated oxidation and inhibition of the peptidyl-prolyl isomerase Pin1.
    Innes BT; Sowole MA; Gyenis L; Dubinsky M; Konermann L; Litchfield DW; Brandl CJ; Shilton BH
    Biochim Biophys Acta; 2015 May; 1852(5):905-12. PubMed ID: 25595659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress.
    Wagner E; Luche S; Penna L; Chevallet M; Van Dorsselaer A; Leize-Wagner E; Rabilloud T
    Biochem J; 2002 Sep; 366(Pt 3):777-85. PubMed ID: 12059788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.