These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Cyclic AMP production and insulin releasing activity of synthetic fragment peptides of glucose-dependent insulinotropic polypeptide. Gault VA; Harriott P; Flatt PR; O'Harte FP Biosci Rep; 2002; 22(5-6):523-8. PubMed ID: 12635849 [TBL] [Abstract][Full Text] [Related]
3. Identification of a bioactive domain in the amino-terminus of glucose-dependent insulinotropic polypeptide (GIP). Hinke SA; Manhart S; Pamir N; Demuth H; W Gelling R; Pederson RA; McIntosh CH Biochim Biophys Acta; 2001 May; 1547(1):143-55. PubMed ID: 11343800 [TBL] [Abstract][Full Text] [Related]
4. In depth analysis of the N-terminal bioactive domain of gastric inhibitory polypeptide. Hinke SA; Manhart S; Speck M; Pederson RA; Demuth HU; McIntosh CH Life Sci; 2004 Aug; 75(15):1857-70. PubMed ID: 15302229 [TBL] [Abstract][Full Text] [Related]
5. Comparative effects of GLP-1 and GIP on cAMP production, insulin secretion, and in vivo antidiabetic actions following substitution of Ala8/Ala2 with 2-aminobutyric acid. Green BD; Gault VA; Flatt PR; Harriott P; Greer B; O'Harte FP Arch Biochem Biophys; 2004 Aug; 428(2):136-43. PubMed ID: 15246869 [TBL] [Abstract][Full Text] [Related]
6. Degradation, cyclic adenosine monophosphate production, insulin secretion, and glycemic effects of two novel N-terminal Ala2-substituted analogs of glucose-dependent insulinotropic polypeptide with preserved biological activity in vivo. Gault VA; O'Harte FP; Harriott P; Flatt PR Metabolism; 2003 Jun; 52(6):679-87. PubMed ID: 12800091 [TBL] [Abstract][Full Text] [Related]
8. Localization of the domains involved in ligand binding and activation of the glucose-dependent insulinotropic polypeptide receptor. Gelling RW; Wheeler MB; Xue J; Gyomorey S; Nian C; Pederson RA; McIntosh CH Endocrinology; 1997 Jun; 138(6):2640-3. PubMed ID: 9165060 [TBL] [Abstract][Full Text] [Related]
9. A new pathway for glucose-dependent insulinotropic polypeptide (GIP) receptor signaling: evidence for the involvement of phospholipase A2 in GIP-stimulated insulin secretion. Ehses JA; Lee SS; Pederson RA; McIntosh CH J Biol Chem; 2001 Jun; 276(26):23667-73. PubMed ID: 11323439 [TBL] [Abstract][Full Text] [Related]
10. GIP(6-30amide) contains the high affinity binding region of GIP and is a potent inhibitor of GIP1-42 action in vitro. Gelling RW; Coy DH; Pederson RA; Wheeler MB; Hinke S; Kwan T; McIntosh CH Regul Pept; 1997 Apr; 69(3):151-4. PubMed ID: 9226399 [TBL] [Abstract][Full Text] [Related]
11. Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. Tseng CC; Kieffer TJ; Jarboe LA; Usdin TB; Wolfe MM J Clin Invest; 1996 Dec; 98(11):2440-5. PubMed ID: 8958204 [TBL] [Abstract][Full Text] [Related]
12. Effects of the novel (Pro3)GIP antagonist and exendin(9-39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin. Gault VA; O'Harte FP; Harriott P; Mooney MH; Green BD; Flatt PR Diabetologia; 2003 Feb; 46(2):222-30. PubMed ID: 12627321 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the cellular and metabolic effects of a novel enzyme-resistant antagonist of glucose-dependent insulinotropic polypeptide. Gault VA; O'Harte FP; Harriott P; Flatt PR Biochem Biophys Res Commun; 2002 Feb; 290(5):1420-6. PubMed ID: 11820780 [TBL] [Abstract][Full Text] [Related]
14. Characterization and biological actions of N-terminal truncated forms of glucose-dependent insulinotropic polypeptide. Kerr BD; Flatt AJ; Flatt PR; Gault VA Biochem Biophys Res Commun; 2011 Jan; 404(3):870-6. PubMed ID: 21184739 [TBL] [Abstract][Full Text] [Related]