BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12716113)

  • 1. Vortex cordis as a mechanism of postshock activation: arrhythmia induction study using a bidomain model.
    Ashihara T; Namba T; Yao T; Ozawa T; Kawase A; Ikeda T; Nakazawa K; Ito M
    J Cardiovasc Electrophysiol; 2003 Mar; 14(3):295-302. PubMed ID: 12716113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization.
    Anderson C; Trayanova N; Skouibine K
    J Cardiovasc Electrophysiol; 2000 Dec; 11(12):1386-96. PubMed ID: 11196563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences between left and right ventricular chamber geometry affect cardiac vulnerability to electric shocks.
    Rodríguez B; Li L; Eason JC; Efimov IR; Trayanova NA
    Circ Res; 2005 Jul; 97(2):168-75. PubMed ID: 15976315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunnel propagation of postshock activations as a hypothesis for fibrillation induction and isoelectric window.
    Ashihara T; Constantino J; Trayanova NA
    Circ Res; 2008 Mar; 102(6):737-45. PubMed ID: 18218982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual electrode-induced phase singularity: a basic mechanism of defibrillation failure.
    Efimov IR; Cheng Y; Van Wagoner DR; Mazgalev T; Tchou PJ
    Circ Res; 1998 May; 82(8):918-25. PubMed ID: 9576111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroporation in a model of cardiac defibrillation.
    Ashihara T; Yao T; Namba T; Ito M; Ikeda T; Kawase A; Toda S; Suzuki T; Inagaki M; Sugimachi M; Kinoshita M; Nakazawa K
    J Cardiovasc Electrophysiol; 2001 Dec; 12(12):1393-403. PubMed ID: 11797997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed success in termination of three-dimensional reentry: role of surface polarization.
    Zemlin C; Mironov S; Pertsov A
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S257-63. PubMed ID: 14760931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling defibrillation: effects of fiber curvature.
    Trayanova N; Skouibine K
    J Electrocardiol; 1998; 31 Suppl():23-9. PubMed ID: 9988001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The probability of defibrillation success and the incidence of postshock arrhythmia as a function of shock strength.
    Cates AW; Wolf PD; Hillsley RE; Souza JJ; Smith WM; Ideker RE
    Pacing Clin Electrophysiol; 1994 Jul; 17(7):1208-17. PubMed ID: 7937226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Success and failure of biphasic shocks: results of bidomain simulations.
    Anderson C; Trayanova NA
    Math Biosci; 2001 Dec; 174(2):91-109. PubMed ID: 11730859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual electrode polarization in the far field: implications for external defibrillation.
    Efimov IR; Aguel F; Cheng Y; Wollenzier B; Trayanova N
    Am J Physiol Heart Circ Physiol; 2000 Sep; 279(3):H1055-70. PubMed ID: 10993768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Success and failure of the defibrillation shock: insights from a simulation study.
    Skouibine K; Trayanova N; Moore P
    J Cardiovasc Electrophysiol; 2000 Jul; 11(7):785-96. PubMed ID: 10921796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia.
    Li HG; Jones DL; Yee R; Klein GJ
    J Am Coll Cardiol; 1993 Aug; 22(2):607-14. PubMed ID: 8335836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postshock arrhythmogenesis in a slice of the canine heart.
    Hillebrenner MG; Eason JC; Campbell CA; Trayanova NA
    J Cardiovasc Electrophysiol; 2003 Oct; 14(10 Suppl):S249-56. PubMed ID: 14760930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of shock-induced changes in transmembrane potential on reentrant waves and outcome during cardioversion of isolated rabbit hearts.
    Evans FG; Ideker RE; Gray RA
    J Cardiovasc Electrophysiol; 2002 Nov; 13(11):1118-27. PubMed ID: 12475103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase singularities and termination of spiral wave reentry.
    Eason J; Trayanova N
    J Cardiovasc Electrophysiol; 2002 Jul; 13(7):672-9. PubMed ID: 12139290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of superiority of ascending ramp waveforms: new insights into mechanisms of shock-induced vulnerability and defibrillation.
    Qu F; Li L; Nikolski VP; Sharma V; Efimov IR
    Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H569-77. PubMed ID: 15792989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional mapping of earliest activation after near-threshold ventricular defibrillation shocks.
    Chattipakorn N; Fotuhi PC; Chattipakorn SC; Ideker RE
    J Cardiovasc Electrophysiol; 2003 Jan; 14(1):65-9. PubMed ID: 12625612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual electrode effects in defibrillation.
    Trayanova N; Skouibine K; Moore P
    Prog Biophys Mol Biol; 1998; 69(2-3):387-403. PubMed ID: 9785947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upper limit of vulnerability in a defibrillation model of the rabbit ventricles.
    Rodríguez B; Trayanova N
    J Electrocardiol; 2003; 36 Suppl():51-6. PubMed ID: 14716592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.