These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 12716157)

  • 21. Parameterization of aerosol and cirrus cloud effects on reflected sunlight spectra measured from space: application of the equivalence theorem.
    Bril A; Oshchepkov S; Yokota T; Inoue G
    Appl Opt; 2007 May; 46(13):2460-70. PubMed ID: 17429457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers.
    Chazette P; Pelon J; Mégie G
    Appl Opt; 2001 Jul; 40(21):3428-40. PubMed ID: 18360368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An extended lidar-based cirrus cloud retrieval scheme: first application over an Arctic site.
    Nakoudi K; Stachlewska IS; Ritter C
    Opt Express; 2021 Mar; 29(6):8553-8580. PubMed ID: 33820301
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Droplet size spectra and water-vapor concentration of laboratory water clouds: inversion of Fourier transform infrared (500-5000 cm(-1)) optical-depth measurement.
    Arnott WP; Schmitt C; Liu Y; Hallett J
    Appl Opt; 1997 Jul; 36(21):5205-16. PubMed ID: 18259335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active Imaging through Cirrus Clouds.
    Landesman B; Kindilien P; Pierson R; Matson C; Mosley D
    Opt Express; 1997 Nov; 1(11):312-23. PubMed ID: 19377551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retrieving cloud geometrical extents from MIPAS/ENVISAT measurements with a 2-D tomographic approach.
    Castelli E; Dinelli BM; Carlotti M; Arnone E; Papandrea E; Ridolfi M
    Opt Express; 2011 Oct; 19(21):20704-21. PubMed ID: 21997081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retrieving radius, concentration, optical depth, and mass of different types of aerosols from high-resolution infrared nadir spectra.
    Clarisse L; Hurtmans D; Prata AJ; Karagulian F; Clerbaux C; De Mazière M; Coheur PF
    Appl Opt; 2010 Jul; 49(19):3713-22. PubMed ID: 20648137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions.
    Reichardt J; Hess M; Macke A
    Appl Opt; 2000 Apr; 39(12):1895-910. PubMed ID: 18345086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Could Cirrus Clouds Have Warmed Early Mars?
    Ramirez RM; Kasting JF
    Icarus; 2017 Jan; 281():248-261. PubMed ID: 30774148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Infrared transmission through cirrus clouds: a radiative model for target detection.
    Liou KN; Takano Y; Ou SC; Heymsfield A; Kreiss W
    Appl Opt; 1990 May; 29(13):1886-96. PubMed ID: 20563105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effect of Cirrus Clouds on 8-13-micro Infrared Sky Radiance.
    Hall FF
    Appl Opt; 1968 May; 7(5):891-8. PubMed ID: 20068704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pressure, temperature, and ozone profile retrieval from simulated atmospheric earthlimb infrared emission.
    Kumer JB; Mergenthaler JL
    Appl Opt; 1991 Mar; 30(9):1124-31. PubMed ID: 20582115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.
    Wagner R; Benz S; Möhler O; Saathoff H; Schnaiter M; Leisner T
    J Phys Chem A; 2007 Dec; 111(50):13003-22. PubMed ID: 18004822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight.
    Mao J; Kawa SR
    Appl Opt; 2004 Feb; 43(4):914-27. PubMed ID: 14960086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upper tropospheric water vapour and its interaction with cirrus clouds as seen from IAGOS long-term routine in situ observations.
    Petzold A; Krämer M; Neis P; Rolf C; Rohs S; Berkes F; Smit HGJ; Gallagher M; Beswick K; Lloyd G; Baumgardner D; Spichtinger P; Nédélec P; Ebert V; Buchholz B; Riese M; Wahner A
    Faraday Discuss; 2017 Aug; 200():229-249. PubMed ID: 28574551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remote sensing of three-dimensional cirrus clouds from satellites: application to continuous-wave laser atmospheric transmission and backscattering.
    Liou KN; Ou SC; Takano Y; Cetola J
    Appl Opt; 2006 Sep; 45(26):6849-59. PubMed ID: 16926921
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct estimation of the global distribution of vertical velocity within cirrus clouds.
    Barahona D; Molod A; Kalesse H
    Sci Rep; 2017 Jul; 7(1):6840. PubMed ID: 28754986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radiometric calibration for the airborne interferometric monitor for greenhouse gases simulator.
    Shimota A; Kobayashi H; Kadokura S
    Appl Opt; 1999 Jan; 38(3):571-6. PubMed ID: 18305649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic product retrieval methodology and validation for NAST-I.
    Zhou DK; Smith WL; Li J; Howell HB; Cantwell GW; Larar AM; Knuteson RO; Tobin DC; Revercomb HE; Mango SA
    Appl Opt; 2002 Nov; 41(33):6957-67. PubMed ID: 12463240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays.
    Sassen K; Zhu J; Benson S
    Appl Opt; 2003 Jan; 42(3):332-41. PubMed ID: 12570253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.