These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 12716368)

  • 1. Selective internalization of monoclonal antibodies by B-cell chronic lymphocytic leukaemia cells.
    Sieber T; Schoeler D; Ringel F; Pascu M; Schriever F
    Br J Haematol; 2003 May; 121(3):458-61. PubMed ID: 12716368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variability in B-cell antigen expression: implications for the treatment of B-cell lymphomas and leukemias with monoclonal antibodies.
    Rossmann ED; Lundin J; Lenkei R; Mellstedt H; Osterborg A
    Hematol J; 2001; 2(5):300-6. PubMed ID: 11920265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoclonal antibodies in the treatment of chronic lymphoid leukemias.
    Robak T
    Leuk Lymphoma; 2004 Feb; 45(2):205-19. PubMed ID: 15101704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of specific anti-B and/or anti-plasma cell immunotherapy on antibody production in baboons: depletion of CD20- and CD22-positive B cells does not result in significantly decreased production of anti-alphaGal antibody.
    Alwayn IP; Xu Y; Basker M; Wu C; Buhler L; Lambrigts D; Treter S; Harper D; Kitamura H; Vitetta ES; Abraham S; Awwad M; White-Scharf ME; Sachs DH; Thall A; Cooper DK
    Xenotransplantation; 2001 Aug; 8(3):157-71. PubMed ID: 11472623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of radioiodinated B cell monoclonal antibodies: inhibition via a FCgamma-receptor-II-mediated mechanism and by drugs.
    Vervoordeldonk SF; Balkenende AY; van den Berg H; von dem Borne AE; van der Schoot CE; Van Leeuwen EF; Slaper-Cortenbach IC
    Cancer Immunol Immunother; 1996 Jan; 42(1):24-30. PubMed ID: 8625363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of SCID/human B cell precursor ALL with anti-CD19 and anti-CD22 immunotoxins.
    Herrera L; Yarbrough S; Ghetie V; Aquino DB; Vitetta ES
    Leukemia; 2003 Feb; 17(2):334-8. PubMed ID: 12592332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoclonal antibodies in the treatment of non-Hodgkin's lymphoma: recent results and future prospects.
    Renner C; Trümper L; Pfreundschuh M
    Leukemia; 1997 Apr; 11 Suppl 2():S55-9. PubMed ID: 9178842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Difference in CD22 molecules in human B cells and basophils.
    Toba K; Hanawa H; Fuse I; Sakaue M; Watanabe K; Uesugi Y; Higuchi W; Takahashi M; Aizawa Y
    Exp Hematol; 2002 Mar; 30(3):205-11. PubMed ID: 11882357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-structural determinants of immunogenicity and the B cell co-receptors, CD19, CD21, and CD22.
    Fearon DT
    Adv Exp Med Biol; 1998; 452():181-4. PubMed ID: 9889972
    [No Abstract]   [Full Text] [Related]  

  • 10. Immunotoxins against CD19 and CD22 are effective in killing precursor-B acute lymphoblastic leukemia cells in vitro.
    Herrera L; Farah RA; Pellegrini VA; Aquino DB; Sandler ES; Buchanan GR; Vitetta ES
    Leukemia; 2000 May; 14(5):853-8. PubMed ID: 10803517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro detection of Mycoplasma fermentans binding to B-lymphocytes in fresh peripheral blood using flow cytometry.
    Cheek RF; Olszak I; Madoff S; Preffer FI
    Cytometry; 1997 May; 28(1):90-5. PubMed ID: 9136760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibodies are capable of directing superantigen-mediated T cell killing of chronic B lymphocytic leukemia cells.
    Gidlöf C; Dohlsten M; Kalland T; Tötterman TH
    Leukemia; 1995 Sep; 9(9):1534-42. PubMed ID: 7544852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of cryopreservation on B cell chronic lymphocytic leukaemia phenotype.
    Deneys V; Thiry V; Hougardy N; Mazzon AM; Leveugle P; De Bruyère M
    J Immunol Methods; 1999 Aug; 228(1-2):13-21. PubMed ID: 10556538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of two anti-CD5 monoclonal antibodies synergistically induces complement-dependent cytotoxicity of chronic lymphocytic leukaemia cells.
    Klitgaard JL; Koefoed K; Geisler C; Gadeberg OV; Frank DA; Petersen J; Jurlander J; Pedersen MW
    Br J Haematol; 2013 Oct; 163(2):182-93. PubMed ID: 23927424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable contribution of monoclonal antibodies to ADCC in patients with chronic lymphocytic leukemia.
    Weitzman J; Betancur M; Boissel L; Rabinowitz AP; Klein A; Klingemann H
    Leuk Lymphoma; 2009 Aug; 50(8):1361-8. PubMed ID: 19562616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive endocytosis and degradation of CD22 by human B cells.
    Shan D; Press OW
    J Immunol; 1995 May; 154(9):4466-75. PubMed ID: 7722303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current and emerging monoclonal antibody treatments for chronic lymphocytic leukemia: state of the art.
    Robak T
    Expert Rev Hematol; 2014 Dec; 7(6):841-57. PubMed ID: 25249370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antigen modulation followed by quantitative flow cytometry of B-chronic lymphocytic leukemia cells after treatment.
    Kusenda J; Babusíková O
    Neoplasma; 2004; 51(2):97-102. PubMed ID: 15190418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL.
    Matutes E; Owusu-Ankomah K; Morilla R; Garcia Marco J; Houlihan A; Que TH; Catovsky D
    Leukemia; 1994 Oct; 8(10):1640-5. PubMed ID: 7523797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-13 has only a subset of IL-4-like activities on B chronic lymphocytic leukaemia cells.
    Fluckiger AC; Brière F; Zurawski G; Bridon JM; Banchereau J
    Immunology; 1994 Nov; 83(3):397-403. PubMed ID: 7530690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.