These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12716882)

  • 1. The role of the conserved Trp330 in Flp-mediated recombination. Functional and structural analysis.
    Chen Y; Rice PA
    J Biol Chem; 2003 Jul; 278(27):24800-7. PubMed ID: 12716882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling hidden catalytic contributions of the conserved His/Trp-III in tyrosine recombinases: assembly of a novel active site in Flp recombinase harboring alanine at this position.
    Ma CH; Kwiatek A; Bolusani S; Voziyanov Y; Jayaram M
    J Mol Biol; 2007 Apr; 368(1):183-96. PubMed ID: 17367810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A newly identified, essential catalytic residue in a critical secondary structure element in the integrase family of site-specific recombinases is conserved in a similar element in eucaryotic type IB topoisomerases.
    Cao Y; Hayes F
    J Mol Biol; 1999 Jun; 289(3):517-27. PubMed ID: 10356326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a Flp recombinase-Holliday junction complex: assembly of an active oligomer by helix swapping.
    Chen Y; Narendra U; Iype LE; Cox MM; Rice PA
    Mol Cell; 2000 Oct; 6(4):885-97. PubMed ID: 11090626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural plasticity of the Flp-Holliday junction complex.
    Conway AB; Chen Y; Rice PA
    J Mol Biol; 2003 Feb; 326(2):425-34. PubMed ID: 12559911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of Box II mutations in yeast site-specific recombinases Flp and R. Significance of amino acid conservation within the Int family and the yeast sub-family.
    Lee J; Serre MC; Yang SH; Whang I; Araki H; Oshima Y; Jayaram M
    J Mol Biol; 1992 Dec; 228(4):1091-103. PubMed ID: 1474580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of box I mutations in yeast site-specific recombinases Flp and R: pairwise complementation with recombinase variants lacking the active-site tyrosine.
    Chen JW; Evans BR; Yang SH; Araki H; Oshima Y; Jayaram M
    Mol Cell Biol; 1992 Sep; 12(9):3757-65. PubMed ID: 1508181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis of a conserved region of the gene encoding the FLP recombinase of Saccharomyces cerevisiae. A role for arginine 191 in binding and ligation.
    Friesen H; Sadowski PD
    J Mol Biol; 1992 May; 225(2):313-26. PubMed ID: 1593623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wild-type Flp recombinase cleaves DNA in trans.
    Lee J; Jayaram M; Grainge I
    EMBO J; 1999 Feb; 18(3):784-91. PubMed ID: 9927438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA recombination and RNA cleavage activities of the Flp protein: roles of two histidine residues in the orientation and activation of the nucleophile for strand cleavage.
    Grainge I; Lee J; Xu CJ; Jayaram M
    J Mol Biol; 2001 Dec; 314(4):717-33. PubMed ID: 11733992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two tricks in one bundle: helix-turn-helix gains enzymatic activity.
    Grishin NV
    Nucleic Acids Res; 2000 Jun; 28(11):2229-33. PubMed ID: 10871343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination.
    Fan HF; Cheng YS; Ma CH; Jayaram M
    Nucleic Acids Res; 2015 Mar; 43(6):3237-55. PubMed ID: 25765648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and kinetic analysis of the RNase active sites of the integrase/tyrosine family site-specific DNA recombinases.
    Sau AK; DeVue Tribble G; Grainge I; Frohlich RF; Knudsen BR; Jayaram M
    J Biol Chem; 2001 Dec; 276(49):46612-23. PubMed ID: 11585826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site.
    Voziyanov Y; Konieczka JH; Stewart AF; Jayaram M
    J Mol Biol; 2003 Feb; 326(1):65-76. PubMed ID: 12547191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insight into site-specific recombination from Flp recombinase-DNA structures.
    Chen Y; Rice PA
    Annu Rev Biophys Biomol Struct; 2003; 32():135-59. PubMed ID: 12598365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Architecture of a serine recombinase-DNA regulatory complex.
    Mouw KW; Rowland SJ; Gajjar MM; Boocock MR; Stark WM; Rice PA
    Mol Cell; 2008 Apr; 30(2):145-55. PubMed ID: 18439894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the site-specific recombinase, XerD.
    Subramanya HS; Arciszewska LK; Baker RA; Bird LE; Sherratt DJ; Wigley DB
    EMBO J; 1997 Sep; 16(17):5178-87. PubMed ID: 9311978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chimeras of the Flp and Cre recombinases: tests of the mode of cleavage by Flp and Cre.
    Shaikh AC; Sadowski PD
    J Mol Biol; 2000 Sep; 302(1):27-48. PubMed ID: 10964559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function correlations in the XerD site-specific recombinase revealed by pentapeptide scanning mutagenesis.
    Cao Y; Hallet B; Sherratt DJ; Hayes F
    J Mol Biol; 1997 Nov; 274(1):39-53. PubMed ID: 9398514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyr60 variants of Flp recombinase generate conformationally altered protein-DNA complexes. Differential activity in full-site and half-site recombinations.
    Chen JW; Evans BR; Zheng L; Jayaram M
    J Mol Biol; 1991 Mar; 218(1):107-18. PubMed ID: 2002496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.