These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 12716940)

  • 1. Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development.
    Dumstrei K; Wang F; Hartenstein V
    J Neurosci; 2003 Apr; 23(8):3325-35. PubMed ID: 12716940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early development of the Drosophila brain: V. Pattern of postembryonic neuronal lineages expressing DE-cadherin.
    Dumstrei K; Wang F; Nassif C; Hartenstein V
    J Comp Neurol; 2003 Jan; 455(4):451-62. PubMed ID: 12508319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila E-cadherin and its binding partner Armadillo/ beta-catenin are required for axonal pathway choices in the developing larval brain.
    Fung S; Wang F; Spindler SR; Hartenstein V
    Dev Biol; 2009 Aug; 332(2):371-82. PubMed ID: 19520071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Postembryonic development of transit amplifying neuroblast lineages in the Drosophila brain.
    Izergina N; Balmer J; Bello B; Reichert H
    Neural Dev; 2009 Dec; 4():44. PubMed ID: 20003348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila cortex and neuropile glia influence secondary axon tract growth, pathfinding, and fasciculation in the developing larval brain.
    Spindler SR; Ortiz I; Fung S; Takashima S; Hartenstein V
    Dev Biol; 2009 Oct; 334(2):355-68. PubMed ID: 19646433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphogenesis and proliferation of the larval brain glia in Drosophila.
    Pereanu W; Shy D; Hartenstein V
    Dev Biol; 2005 Jul; 283(1):191-203. PubMed ID: 15907832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage.
    Pereanu W; Hartenstein V
    J Neurosci; 2006 May; 26(20):5534-53. PubMed ID: 16707805
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Nguyen PK; Cheng LY
    Elife; 2024 Jun; 13():. PubMed ID: 38905123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pvr receptor tyrosine kinase signaling promotes post-embryonic morphogenesis, and survival of glia and neural progenitor cells in
    Read RD
    Development; 2018 Dec; 145(23):. PubMed ID: 30327326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain.
    Lovick JK; Kong A; Omoto JJ; Ngo KT; Younossi-Hartenstein A; Hartenstein V
    Dev Neurobiol; 2016 Apr; 76(4):434-51. PubMed ID: 26178322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroblast niche position is controlled by Phosphoinositide 3-kinase-dependent DE-Cadherin adhesion.
    Doyle SE; Pahl MC; Siller KH; Ardiff L; Siegrist SE
    Development; 2017 Mar; 144(5):820-829. PubMed ID: 28126840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of DE-cadherin during cellularization, germ layer formation and early neurogenesis in the Drosophila embryo.
    Wang F; Dumstrei K; Haag T; Hartenstein V
    Dev Biol; 2004 Jun; 270(2):350-63. PubMed ID: 15183719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Embryonic origin of the Drosophila brain neuropile.
    Younossi-Hartenstein A; Nguyen B; Shy D; Hartenstein V
    J Comp Neurol; 2006 Aug; 497(6):981-98. PubMed ID: 16802336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain.
    Hartenstein V; Younossi-Hartenstein A; Lovick JK; Kong A; Omoto JJ; Ngo KT; Viktorin G
    Dev Biol; 2015 Oct; 406(1):14-39. PubMed ID: 26141956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segregation of postembryonic neuronal and glial lineages inferred from a mosaic analysis of the Drosophila larval brain.
    Colonques J; Ceron J; Tejedor FJ
    Mech Dev; 2007 May; 124(5):327-40. PubMed ID: 17344035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex.
    Bayraktar OA; Boone JQ; Drummond ML; Doe CQ
    Neural Dev; 2010 Oct; 5():26. PubMed ID: 20920301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postembryonic brain development in the monarch butterfly,Danaus plexippus plexippus, L. : I. Cellular events during brain morphogenesis.
    Nordlander RH; Edwards JS
    Wilhelm Roux Arch Entwickl Mech Org; 1969 Sep; 162(3):197-217. PubMed ID: 28304450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization and postembryonic development of glial cells in the adult central brain of Drosophila.
    Awasaki T; Lai SL; Ito K; Lee T
    J Neurosci; 2008 Dec; 28(51):13742-53. PubMed ID: 19091965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Drosophila type II neuroblast lineages containing transit amplifying ganglion mother cells.
    Boone JQ; Doe CQ
    Dev Neurobiol; 2008 Aug; 68(9):1185-95. PubMed ID: 18548484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system.
    Das A; Gupta T; Davla S; Prieto-Godino LL; Diegelmann S; Reddy OV; Raghavan KV; Reichert H; Lovick J; Hartenstein V
    Dev Biol; 2013 Jan; 373(2):322-37. PubMed ID: 23149077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.