These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 12716940)

  • 21. Distinct functions of human numb isoforms revealed by misexpression in the neural stem cell lineage in the Drosophila larval brain.
    Toriya M; Tokunaga A; Sawamoto K; Nakao K; Okano H
    Dev Neurosci; 2006; 28(1-2):142-55. PubMed ID: 16508311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression profile of the cadherin family in the developing Drosophila brain.
    Fung S; Wang F; Chase M; Godt D; Hartenstein V
    J Comp Neurol; 2008 Jan; 506(3):469-88. PubMed ID: 18041774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts.
    Lovick JK; Ngo KT; Omoto JJ; Wong DC; Nguyen JD; Hartenstein V
    Dev Biol; 2013 Dec; 384(2):228-57. PubMed ID: 23880429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets.
    Schmid A; Chiba A; Doe CQ
    Development; 1999 Nov; 126(21):4653-89. PubMed ID: 10518486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The development of the Drosophila larval brain.
    Hartenstein V; Spindler S; Pereanu W; Fung S
    Adv Exp Med Biol; 2008; 628():1-31. PubMed ID: 18683635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fragile X protein controls neural stem cell proliferation in the Drosophila brain.
    Callan MA; Cabernard C; Heck J; Luois S; Doe CQ; Zarnescu DC
    Hum Mol Genet; 2010 Aug; 19(15):3068-79. PubMed ID: 20504994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain.
    Kuert PA; Hartenstein V; Bello BC; Lovick JK; Reichert H
    Dev Biol; 2014 Jun; 390(2):102-15. PubMed ID: 24713419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutation of the central nervous system neuroblast proliferation repressor ana leads to defects in larval olfactory behavior.
    Park Y; Caldwell MC; Datta S
    J Neurobiol; 1997 Aug; 33(2):199-211. PubMed ID: 9240375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early-born neurons in type II neuroblast lineages establish a larval primordium and integrate into adult circuitry during central complex development in Drosophila.
    Riebli N; Viktorin G; Reichert H
    Neural Dev; 2013 Apr; 8():6. PubMed ID: 23618231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polycomb group genes are required for neural stem cell survival in postembryonic neurogenesis of Drosophila.
    Bello B; Holbro N; Reichert H
    Development; 2007 Mar; 134(6):1091-9. PubMed ID: 17287254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development.
    Bello BC; Izergina N; Caussinus E; Reichert H
    Neural Dev; 2008 Feb; 3():5. PubMed ID: 18284664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development.
    Viktorin G; Riebli N; Popkova A; Giangrande A; Reichert H
    Dev Biol; 2011 Aug; 356(2):553-65. PubMed ID: 21708145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones.
    Wong DC; Lovick JK; Ngo KT; Borisuthirattana W; Omoto JJ; Hartenstein V
    Dev Biol; 2013 Dec; 384(2):258-89. PubMed ID: 23872236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Programmed cell death in type II neuroblast lineages is required for central complex development in the Drosophila brain.
    Jiang Y; Reichert H
    Neural Dev; 2012 Jan; 7():3. PubMed ID: 22257485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetric cell division of thoracic neuroblast 6-4 to bifurcate glial and neuronal lineage in Drosophila.
    Akiyama-Oda Y; Hosoya T; Hotta Y
    Development; 1999 May; 126(9):1967-74. PubMed ID: 10101130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of neuroblast proliferation by surface glia in the Drosophila larval brain.
    Kanai MI; Kim MJ; Akiyama T; Takemura M; Wharton K; O'Connor MB; Nakato H
    Sci Rep; 2018 Feb; 8(1):3730. PubMed ID: 29487331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene expression patterns in primary neuronal clusters of the Drosophila embryonic brain.
    Sprecher SG; Reichert H; Hartenstein V
    Gene Expr Patterns; 2007 Apr; 7(5):584-95. PubMed ID: 17300994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dilp-2-mediated PI3-kinase activation coordinates reactivation of quiescent neuroblasts with growth of their glial stem cell niche.
    Yuan X; Sipe CW; Suzawa M; Bland ML; Siegrist SE
    PLoS Biol; 2020 May; 18(5):e3000721. PubMed ID: 32463838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Commitment of abdominal neuroblasts in Drosophila to a male or female fate is dependent on genes of the sex-determining hierarchy.
    Taylor BJ; Truman JW
    Development; 1992 Mar; 114(3):625-42. PubMed ID: 1618132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of glia-neuron cell-fate switch in the Drosophila thoracic neuroblast 6-4 lineage.
    Akiyama-Oda Y; Hotta Y; Tsukita S; Oda H
    Development; 2000 Aug; 127(16):3513-22. PubMed ID: 10903176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.