BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12717010)

  • 1. Stimulation-induced mitochondrial [Ca2+] elevations in mouse motor terminals: comparison of wild-type with SOD1-G93A.
    Vila L; Barrett EF; Barrett JN
    J Physiol; 2003 Jun; 549(Pt 3):719-28. PubMed ID: 12717010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Psi(m) depolarization that accompanies mitochondrial Ca2+ uptake is greater in mutant SOD1 than in wild-type mouse motor terminals.
    Nguyen KT; García-Chacón LE; Barrett JN; Barrett EF; David G
    Proc Natl Acad Sci U S A; 2009 Feb; 106(6):2007-11. PubMed ID: 19174508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extrusion of Ca2+ from mouse motor terminal mitochondria via a Na+-Ca2+ exchanger increases post-tetanic evoked release.
    García-Chacón LE; Nguyen KT; David G; Barrett EF
    J Physiol; 2006 Aug; 574(Pt 3):663-75. PubMed ID: 16613870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals.
    David G; Talbot J; Barrett EF
    Cell Calcium; 2003 Mar; 33(3):197-206. PubMed ID: 12600806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation-induced changes in [Ca2+] in lizard motor nerve terminals.
    David G; Barrett JN; Barrett EF
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):83-96. PubMed ID: 9350620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+].
    Talbot JD; David G; Barrett EF
    J Neurophysiol; 2003 Jul; 90(1):491-502. PubMed ID: 12672777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repetitive nerve stimulation transiently opens the mitochondrial permeability transition pore in motor nerve terminals of symptomatic mutant SOD1 mice.
    Nguyen KT; Barrett JN; García-Chacón L; David G; Barrett EF
    Neurobiol Dis; 2011 Jun; 42(3):381-90. PubMed ID: 21310237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial clearance of cytosolic Ca(2+) in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca(2+)].
    David G
    J Neurosci; 1999 Sep; 19(17):7495-506. PubMed ID: 10460256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals.
    David G; Barrett EF
    J Physiol; 2003 Apr; 548(Pt 2):425-38. PubMed ID: 12588898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation-evoked increases in cytosolic [Ca(2+)] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent.
    David G; Barrett EF
    J Neurosci; 2000 Oct; 20(19):7290-6. PubMed ID: 11007886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals.
    David G; Barrett JN; Barrett EF
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):59-65. PubMed ID: 9547381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of mitochondrion on calcium transients at intact presynaptic terminals depend on frequency of nerve firing.
    Peng YY
    J Neurophysiol; 1998 Jul; 80(1):186-95. PubMed ID: 9658040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation-induced changes in NADH fluorescence and mitochondrial membrane potential in lizard motor nerve terminals.
    Talbot J; Barrett JN; Barrett EF; David G
    J Physiol; 2007 Mar; 579(Pt 3):783-98. PubMed ID: 17218351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sod1 gene ablation in adult mice leads to physiological changes at the neuromuscular junction similar to changes that occur in old wild-type mice.
    Ivannikov MV; Van Remmen H
    Free Radic Biol Med; 2015 Jul; 84():254-262. PubMed ID: 25841780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative Ca2+ removal from presynaptic terminals of the spiny lobster neuromuscular junction.
    Ohnuma K; Kazawa T; Ogawa S; Suzuki N; Miwa A; Kijima H
    Biophys J; 1999 Apr; 76(4):1819-34. PubMed ID: 10096881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of mitochondrial dysfunction in the Ca2+-induced decline of transmitter release at K+-depolarized motor neuron terminals.
    Calupca MA; Hendricks GM; Hardwick JC; Parsons RL
    J Neurophysiol; 1999 Feb; 81(2):498-506. PubMed ID: 10036254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in Ca2+ regulation for high-output Is and low-output Ib motor terminals in Drosophila larvae.
    He T; Singh V; Rumpal N; Lnenicka GA
    Neuroscience; 2009 Apr; 159(4):1283-91. PubMed ID: 19409207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid, stimulation-induced reduction of C12-resorufin in motor nerve terminals: linkage to mitochondrial metabolism.
    Talbot JD; Barrett JN; Barrett EF; David G
    J Neurochem; 2008 May; 105(3):807-19. PubMed ID: 18205748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type-3 ryanodine receptor involved in Ca2+-induced Ca2+ release and transmitter exocytosis at frog motor nerve terminals.
    Kubota M; Narita K; Murayama T; Suzuki S; Soga S; Usukura J; Ogawa Y; Kuba K
    Cell Calcium; 2005 Dec; 38(6):557-67. PubMed ID: 16157373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.