These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12717026)

  • 1. Involvement of conserved asparagine and arginine residues from the N-terminal region in the catalytic mechanism of rat liver and Trypanosoma cruzi tyrosine aminotransferases.
    Sobrado VR; Montemartini-Kalisz M; Kalisz HM; De La Fuente MC; Hecht HJ; Nowicki C
    Protein Sci; 2003 May; 12(5):1039-50. PubMed ID: 12717026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant tyrosine aminotransferase from Trypanosoma cruzi: structural characterization and site directed mutagenesis of a broad substrate specificity enzyme.
    Nowicki C; Hunter GR; Montemartini-Kalisz M; Blankenfeldt W; Hecht H; Kalisz HM
    Biochim Biophys Acta; 2001 Apr; 1546(2):268-81. PubMed ID: 11295433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of Trypanosoma cruzi tyrosine aminotransferase: substrate specificity is influenced by cofactor binding mode.
    Blankenfeldt W; Nowicki C; Montemartini-Kalisz M; Kalisz HM; Hecht HJ
    Protein Sci; 1999 Nov; 8(11):2406-17. PubMed ID: 10595543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of stage-specific aminotransferases from trypanosomatids.
    Marciano D; Maugeri DA; Cazzulo JJ; Nowicki C
    Mol Biochem Parasitol; 2009 Aug; 166(2):172-82. PubMed ID: 19443056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of stage-specific isoforms of aspartate aminotransferases from Trypanosoma cruzi and Trypanosoma brucei.
    Marciano D; Llorente C; Maugeri DA; de la Fuente C; Opperdoes F; Cazzulo JJ; Nowicki C
    Mol Biochem Parasitol; 2008 Sep; 161(1):12-20. PubMed ID: 18602174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular analysis of Trypanosoma cruzi metallocarboxypeptidase 1 provides insight into fold and substrate specificity.
    Niemirowicz G; Fernández D; Solà M; Cazzulo JJ; Avilés FX; Gomis-Rüth FX
    Mol Microbiol; 2008 Nov; 70(4):853-66. PubMed ID: 18793339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Non-Canonical Substrates of Trypanosoma cruzi Tyrosine and Aspartate Aminotransferases: Branched-Chain Amino Acids.
    Manchola NC; Silber AM; Nowicki C
    J Eukaryot Microbiol; 2018 Jan; 65(1):70-76. PubMed ID: 28618210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tyrosine aminotransferase from Trypanosoma rangeli: sequence and genomic characterization.
    Bontempi EJ; García GA; Buschiazzo A; Henriksson J; Pravia CA; Ruiz AM; Pettersson U; Pszenny V
    FEMS Microbiol Lett; 2000 Aug; 189(2):253-7. PubMed ID: 10930747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM; McIntosh EM; Muscat GE
    J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does an enzyme evolved in vitro compare to naturally occurring homologs possessing the targeted function? Tyrosine aminotransferase from aspartate aminotransferase.
    Rothman SC; Kirsch JF
    J Mol Biol; 2003 Mar; 327(3):593-608. PubMed ID: 12634055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the specificity of a trypanosomal aromatic alpha-hydroxy acid dehydrogenase by site-directed mutagenesis.
    Vernal J; Fiser A; Sali A; Müller M; Cazzulo JJ; Nowicki C
    Biochem Biophys Res Commun; 2002 Apr; 293(1):633-9. PubMed ID: 12054650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed evolution relieves product inhibition and confers in vivo function to a rationally designed tyrosine aminotransferase.
    Rothman SC; Voorhies M; Kirsch JF
    Protein Sci; 2004 Mar; 13(3):763-72. PubMed ID: 14767072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved and nonconserved residues in the substrate binding site of 7,8-diaminopelargonic acid synthase from Escherichia coli are essential for catalysis.
    Sandmark J; Eliot AC; Famm K; Schneider G; Kirsch JF
    Biochemistry; 2004 Feb; 43(5):1213-22. PubMed ID: 14756557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional studies of active-site mutants from Drosophila melanogaster deoxyribonucleoside kinase. Investigations of the putative catalytic glutamate-arginine pair and of residues responsible for substrate specificity.
    Egeblad-Welin L; Sonntag Y; Eklund H; Munch-Petersen B
    FEBS J; 2007 Mar; 274(6):1542-51. PubMed ID: 17302737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of Trypanosoma cruzi glucokinase reveals features determining oligomerization and anomer specificity of hexose-phosphorylating enzymes.
    Cordeiro AT; Cáceres AJ; Vertommen D; Concepción JL; Michels PA; Versées W
    J Mol Biol; 2007 Oct; 372(5):1215-26. PubMed ID: 17761195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putrescine activation of Trypanosoma cruzi S-adenosylmethionine decarboxylase.
    Clyne T; Kinch LN; Phillips MA
    Biochemistry; 2002 Nov; 41(44):13207-16. PubMed ID: 12403622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of UDP-galactopyranose mutase reveals a critical role for the active-site, conserved arginine residues.
    Chad JM; Sarathy KP; Gruber TD; Addala E; Kiessling LL; Sanders DA
    Biochemistry; 2007 Jun; 46(23):6723-32. PubMed ID: 17511471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the dimeric phosphoenolpyruvate carboxykinase (PEPCK) from Trypanosoma cruzi at 2 A resolution.
    Trapani S; Linss J; Goldenberg S; Fischer H; Craievich AF; Oliva G
    J Mol Biol; 2001 Nov; 313(5):1059-72. PubMed ID: 11700062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple NADPH-cytochrome P450 reductases from Trypanosoma cruzi suggested role on drug resistance.
    Portal P; Fernández Villamil S; Alonso GD; De Vas MG; Flawiá MM; Torres HN; Paveto C
    Mol Biochem Parasitol; 2008 Jul; 160(1):42-51. PubMed ID: 18455247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.