BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12717027)

  • 21. Crystal structure of Ruminococcus albus cellobiose 2-epimerase: structural insights into epimerization of unmodified sugar.
    Fujiwara T; Saburi W; Inoue S; Mori H; Matsui H; Tanaka I; Yao M
    FEBS Lett; 2013 Apr; 587(7):840-6. PubMed ID: 23462136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the divalent metal ion in sugar binding, ring opening, and isomerization by D-xylose isomerase: replacement of a catalytic metal by an amino acid.
    Allen KN; Lavie A; Glasfeld A; Tanada TN; Gerrity DP; Carlson SC; Farber GK; Petsko GA; Ringe D
    Biochemistry; 1994 Feb; 33(6):1488-94. PubMed ID: 7906142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity.
    Zhang Y; Swaminathan GJ; Deshpande A; Boix E; Natesh R; Xie Z; Acharya KR; Brew K
    Biochemistry; 2003 Nov; 42(46):13512-21. PubMed ID: 14621997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 A Streptomyces rubiginosus structures with xylitol and D-xylose.
    Whitlow M; Howard AJ; Finzel BC; Poulos TL; Winborne E; Gilliland GL
    Proteins; 1991; 9(3):153-73. PubMed ID: 2006134
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the Saccharomyces cerevisiae galactose mutarotase/UDP-galactose 4-epimerase protein, Gal10p.
    Scott A; Timson DJ
    FEMS Yeast Res; 2007 May; 7(3):366-71. PubMed ID: 17253981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structures and mechanism of 6-phospho-beta-galactosidase from Lactococcus lactis.
    Wiesmann C; Hengstenberg W; Schulz GE
    J Mol Biol; 1997 Jun; 269(5):851-60. PubMed ID: 9223646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystal structures of the bacterial solute receptor AcbH displaying an exclusive substrate preference for β-D-galactopyranose.
    Licht A; Bulut H; Scheffel F; Daumke O; Wehmeier UF; Saenger W; Schneider E; Vahedi-Faridi A
    J Mol Biol; 2011 Feb; 406(1):92-105. PubMed ID: 21168419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and in silico substrate-binding mode of ADP-L-glycero-D-manno-heptose 6-epimerase from Burkholderia thailandensis.
    Kim MS; Lim A; Yang SW; Park J; Lee D; Shin DH
    Acta Crystallogr D Biol Crystallogr; 2013 Apr; 69(Pt 4):658-68. PubMed ID: 23519675
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering the active center of the 6-phospho-beta-galactosidase from Lactococcus lactis.
    Schulte D; Hengstenberg W
    Protein Eng; 2000 Jul; 13(7):515-8. PubMed ID: 10906347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystallographic analysis of the epimeric and anomeric specificity of the periplasmic transport/chemosensory protein receptor for D-glucose and D-galactose.
    Vyas MN; Vyas NK; Quiocho FA
    Biochemistry; 1994 Apr; 33(16):4762-8. PubMed ID: 8161535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crystal structure of ADP-L-glycero-D-mannoheptose 6-epimerase: catalysis with a twist.
    Deacon AM; Ni YS; Coleman WG; Ealick SE
    Structure; 2000 May; 8(5):453-62. PubMed ID: 10896473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering the substrate specificity of xylose isomerase.
    Karimäki J; Parkkinen T; Santa H; Pastinen O; Leisola M; Rouvinen J; Turunen O
    Protein Eng Des Sel; 2004 Dec; 17(12):861-9. PubMed ID: 15713782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The central cavity from the (alpha/alpha)6 barrel structure of Anabaena sp. CH1 N-acetyl-D-glucosamine 2-epimerase contains two key histidine residues for reversible conversion.
    Lee YC; Wu HM; Chang YN; Wang WC; Hsu WH
    J Mol Biol; 2007 Mar; 367(3):895-908. PubMed ID: 17292397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. GDP-perosamine synthase: structural analysis and production of a novel trideoxysugar.
    Cook PD; Holden HM
    Biochemistry; 2008 Mar; 47(9):2833-40. PubMed ID: 18247575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deciphering the function of an ORF: Salmonella enterica DeoM protein is a new mutarotase specific for deoxyribose.
    Assairi L; Bertrand T; Ferdinand J; Slavova-Azmanova N; Christensen M; Briozzo P; Schaeffer F; Craescu CT; Neuhard J; Bârzu O; Gilles AM
    Protein Sci; 2004 May; 13(5):1295-303. PubMed ID: 15075407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily.
    Akana J; Fedorov AA; Fedorov E; Novak WR; Babbitt PC; Almo SC; Gerlt JA
    Biochemistry; 2006 Feb; 45(8):2493-503. PubMed ID: 16489742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Roles of active site tryptophans in substrate binding and catalysis by alpha-1,3 galactosyltransferase.
    Zhang Y; Deshpande A; Xie Z; Natesh R; Acharya KR; Brew K
    Glycobiology; 2004 Dec; 14(12):1295-302. PubMed ID: 15229192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accommodation of GDP-linked sugars in the active site of GDP-perosamine synthase.
    Cook PD; Carney AE; Holden HM
    Biochemistry; 2008 Oct; 47(40):10685-93. PubMed ID: 18795799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift.
    Collyer CA; Henrick K; Blow DM
    J Mol Biol; 1990 Mar; 212(1):211-35. PubMed ID: 2319597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.