These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Neural correlates of the automatic and goal-driven biases in orienting spatial attention. Fecteau JH; Bell AH; Munoz DP J Neurophysiol; 2004 Sep; 92(3):1728-37. PubMed ID: 15115792 [TBL] [Abstract][Full Text] [Related]
7. Three bands of oscillatory activity in the lateral geniculate nucleus of the cat visual system. Podvigin NF; Bagaeva TV; Boykova EV; Zargarov AA; Podvigina DN; Pöppel E Neurosci Lett; 2004 May; 361(1-3):83-5. PubMed ID: 15135899 [TBL] [Abstract][Full Text] [Related]
8. Attention in Drosophila. van Swinderen B Int Rev Neurobiol; 2011; 99():51-85. PubMed ID: 21906536 [TBL] [Abstract][Full Text] [Related]
9. Correlates of capture of attention and inhibition of return across stages of visual processing. Fecteau JH; Munoz DP J Cogn Neurosci; 2005 Nov; 17(11):1714-27. PubMed ID: 16269108 [TBL] [Abstract][Full Text] [Related]
10. Long-term but not short-term blockade of dopamine release in Drosophila impairs orientation during flight in a visual attention paradigm. Ye Y; Xi W; Peng Y; Wang Y; Guo A Eur J Neurosci; 2004 Aug; 20(4):1001-7. PubMed ID: 15305868 [TBL] [Abstract][Full Text] [Related]
11. A natural approach to studying vision. Felsen G; Dan Y Nat Neurosci; 2005 Dec; 8(12):1643-6. PubMed ID: 16306891 [TBL] [Abstract][Full Text] [Related]
12. Context generalization in Drosophila visual learning requires the mushroom bodies. Liu L; Wolf R; Ernst R; Heisenberg M Nature; 1999 Aug; 400(6746):753-6. PubMed ID: 10466722 [TBL] [Abstract][Full Text] [Related]
13. Orienting attention to locations in internal representations. Griffin IC; Nobre AC J Cogn Neurosci; 2003 Nov; 15(8):1176-94. PubMed ID: 14709235 [TBL] [Abstract][Full Text] [Related]
14. Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. Pfeiffer K; Kinoshita M; Homberg U J Neurophysiol; 2005 Dec; 94(6):3903-15. PubMed ID: 16049147 [TBL] [Abstract][Full Text] [Related]
15. Primary visual cortex neurons that contribute to resolve the aperture problem. Guo K; Robertson R; Nevado A; Pulgarin M; Mahmoodi S; Young MP Neuroscience; 2006; 138(4):1397-406. PubMed ID: 16446037 [TBL] [Abstract][Full Text] [Related]
16. Comparison of direction and object selectivity of local field potentials and single units in macaque posterior parietal cortex during prehension. Asher I; Stark E; Abeles M; Prut Y J Neurophysiol; 2007 May; 97(5):3684-95. PubMed ID: 17376847 [TBL] [Abstract][Full Text] [Related]
17. Orientation sensitive properties of visually driven neurons in extrastriate area 21a of cat cortex. Harutiunian-Kozak BA; Grigorian GG; Kozak JA; Sharanbekian AB; Sarkisyan GS; Khachvankian DK Arch Ital Biol; 2008 Jun; 146(2):119-30. PubMed ID: 18822799 [TBL] [Abstract][Full Text] [Related]
18. The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster. Budick SA; Reiser MB; Dickinson MH J Exp Biol; 2007 Dec; 210(Pt 23):4092-103. PubMed ID: 18025010 [TBL] [Abstract][Full Text] [Related]
19. Timing of ascending and descending visual signals predicts the response mode of single cells in the thalamic nucleus rotundus of the pigeon (Columba livia). Folta K; Troje NF; Güntürkün O Brain Res; 2007 Feb; 1132(1):100-9. PubMed ID: 17184744 [TBL] [Abstract][Full Text] [Related]
20. Neuronal cooperativity in the visual system of the fly. Reichardt W Acta Biochim Biophys Acad Sci Hung; 1977; 12(2):99-120. PubMed ID: 930558 [No Abstract] [Full Text] [Related] [Next] [New Search]