BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 12718527)

  • 1. Temperature range of thermodynamic stability for the native state of reversible two-state proteins.
    Kumar S; Tsai CJ; Nussinov R
    Biochemistry; 2003 May; 42(17):4864-73. PubMed ID: 12718527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experiment-guided thermodynamic simulations on reversible two-state proteins: implications for protein thermostability.
    Kumar S; Nussinov R
    Biophys Chem; 2004 Nov; 111(3):235-46. PubMed ID: 15501567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal unfolding of the archaeal DNA and RNA binding protein Ssh10.
    Wu X; Oppermann M; Berndt KD; Bergman T; Jörnvall H; Knapp S; Oppermann U
    Biochem Biophys Res Commun; 2008 Sep; 373(4):482-7. PubMed ID: 18571501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability.
    de Bakker PI; Hünenberger PH; McCammon JA
    J Mol Biol; 1999 Jan; 285(4):1811-30. PubMed ID: 9917414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural selection for kinetic stability is a likely origin of correlations between mutational effects on protein energetics and frequencies of amino acid occurrences in sequence alignments.
    Godoy-Ruiz R; Ariza F; Rodriguez-Larrea D; Perez-Jimenez R; Ibarra-Molero B; Sanchez-Ruiz JM
    J Mol Biol; 2006 Oct; 362(5):966-78. PubMed ID: 16935299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state.
    Wallgren M; Adén J; Pylypenko O; Mikaelsson T; Johansson LB; Rak A; Wolf-Watz M
    J Mol Biol; 2008 Jun; 379(4):845-58. PubMed ID: 18471828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic molecular switch in macromolecular interactions.
    Chun PW
    Cell Biochem Biophys; 2000; 33(2):149-69. PubMed ID: 11325035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of proteins by ligand binding: application to drug screening and determination of unfolding energetics.
    Waldron TT; Murphy KP
    Biochemistry; 2003 May; 42(17):5058-64. PubMed ID: 12718549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive analysis of protein folding activation thermodynamics reveals a universal behavior violated by kinetically stable proteases.
    Jaswal SS; Truhlar SM; Dill KA; Agard DA
    J Mol Biol; 2005 Mar; 347(2):355-66. PubMed ID: 15740746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic interactions contribute to reduced heat capacity change of unfolding in a thermophilic ribosomal protein l30e.
    Lee CF; Allen MD; Bycroft M; Wong KB
    J Mol Biol; 2005 Apr; 348(2):419-31. PubMed ID: 15811378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermodynamic comparison of mesophilic and thermophilic ribonucleases H.
    Hollien J; Marqusee S
    Biochemistry; 1999 Mar; 38(12):3831-6. PubMed ID: 10090773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based stability analysis of an extremely stable dimeric DNA binding protein from Sulfolobus islandicus.
    Weininger U; Zeeb M; Neumann P; Löw C; Stubbs MT; Lipps G; Balbach J
    Biochemistry; 2009 Oct; 48(42):10030-7. PubMed ID: 19788170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of core hydrophobicity and packing in the hyperthermophile proteins Sac7d and Sso7d.
    Clark AT; McCrary BS; Edmondson SP; Shriver JW
    Biochemistry; 2004 Mar; 43(10):2840-53. PubMed ID: 15005619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic effects of proline introduction on protein stability.
    Prajapati RS; Das M; Sreeramulu S; Sirajuddin M; Srinivasan S; Krishnamurthy V; Ranjani R; Ramakrishnan C; Varadarajan R
    Proteins; 2007 Feb; 66(2):480-91. PubMed ID: 17034035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetically robust monomeric protein from a hyperthermophile.
    Mukaiyama A; Takano K; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2004 Nov; 43(43):13859-66. PubMed ID: 15504048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermodynamic comparison of HPr proteins from extremophilic organisms.
    Razvi A; Scholtz JM
    Biochemistry; 2006 Apr; 45(13):4084-92. PubMed ID: 16566582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of mutation of the Sac7d intercalating residues on the temperature dependence of DNA distortion and binding thermodynamics.
    Peters WB; Edmondson SP; Shriver JW
    Biochemistry; 2005 Mar; 44(12):4794-804. PubMed ID: 15779906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of DNA binding and distortion by the hyperthermophile chromatin protein Sac7d.
    Peters WB; Edmondson SP; Shriver JW
    J Mol Biol; 2004 Oct; 343(2):339-60. PubMed ID: 15451665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural domain design: enhanced thermal stability of a zinc-lacking ferredoxin isoform shows that a hydrophobic core efficiently replaces the structural metal site.
    Rocha R; Leal SS; Teixeira VH; Regalla M; Huber H; Baptista AM; Soares CM; Gomes CM
    Biochemistry; 2006 Aug; 45(34):10376-84. PubMed ID: 16922514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of negative charges on the surface of Escherichia coli thioredoxin: pockets versus protrusions.
    Mancusso R; Cruz E; Cataldi M; Mendoza C; Fuchs J; Wang H; Yang X; Tasayco ML
    Biochemistry; 2004 Apr; 43(13):3835-43. PubMed ID: 15049690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.