BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 12718535)

  • 1. The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70.
    Wittung-Stafshede P; Guidry J; Horne BE; Landry SJ
    Biochemistry; 2003 May; 42(17):4937-44. PubMed ID: 12718535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK.
    Landry SJ
    Biochemistry; 2003 May; 42(17):4926-36. PubMed ID: 12718534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates.
    Russell R; Wali Karzai A; Mehl AF; McMacken R
    Biochemistry; 1999 Mar; 38(13):4165-76. PubMed ID: 10194333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B
    J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of nucleotide-induced DnaK conformational states.
    Taneva SG; Moro F; Velázquez-Campoy A; Muga A
    Biochemistry; 2010 Feb; 49(6):1338-45. PubMed ID: 20078127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switches, catapults, and chaperones: steady-state kinetic analysis of Hsp70-substrate interactions.
    Chesnokova LS; Witt SN
    Biochemistry; 2005 Aug; 44(33):11224-33. PubMed ID: 16101306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release.
    Slepenkov SV; Patchen B; Peterson KM; Witt SN
    Biochemistry; 2003 May; 42(19):5867-76. PubMed ID: 12741845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain.
    Moro F; Fernández-Sáiz V; Muga A
    Protein Sci; 2006 Feb; 15(2):223-33. PubMed ID: 16384998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The functional cycle and regulation of the Thermus thermophilus DnaK chaperone system.
    Klostermeier D; Seidel R; Reinstein J
    J Mol Biol; 1999 Apr; 287(3):511-25. PubMed ID: 10092456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdomain communication in the molecular chaperone DnaK.
    Han W; Christen P
    Biochem J; 2003 Feb; 369(Pt 3):627-34. PubMed ID: 12383055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J
    J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dynamics of the DnaK-peptide complex.
    Popp S; Packschies L; Radzwill N; Vogel KP; Steinhoff HJ; Reinstein J
    J Mol Biol; 2005 Apr; 347(5):1039-52. PubMed ID: 15784262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multistep mechanism of substrate binding determines chaperone activity of Hsp70.
    Mayer MP; Schröder H; Rüdiger S; Paal K; Laufen T; Bukau B
    Nat Struct Biol; 2000 Jul; 7(7):586-93. PubMed ID: 10876246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide-induced conformational changes in the molecular chaperone DnaK.
    Slepenkov SV; Witt SN
    Biochemistry; 1998 Nov; 37(47):16749-56. PubMed ID: 9843445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ.
    Pierpaoli EV; Gisler SM; Christen P
    Biochemistry; 1998 Nov; 37(47):16741-8. PubMed ID: 9843444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutational analysis of the energetics of the GrpE.DnaK binding interface: equilibrium association constants by sedimentation velocity analytical ultracentrifugation.
    Gelinas AD; Toth J; Bethoney KA; Stafford WF; Harrison CJ
    J Mol Biol; 2004 May; 339(2):447-58. PubMed ID: 15136046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GrpE accelerates peptide binding and release from the high affinity state of DnaK.
    Mally A; Witt SN
    Nat Struct Biol; 2001 Mar; 8(3):254-7. PubMed ID: 11224572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK.
    Grimshaw JP; Siegenthaler RK; Züger S; Schönfeld HJ; Z'graggen BR; Christen P
    J Mol Biol; 2005 Nov; 353(4):888-96. PubMed ID: 16198374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system.
    Pierpaoli EV; Sandmeier E; Baici A; Schönfeld HJ; Gisler S; Christen P
    J Mol Biol; 1997 Jun; 269(5):757-68. PubMed ID: 9223639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.