These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12718930)

  • 1. The promise of macromolecular crystallization in microfluidic chips.
    van der Woerd M; Ferree D; Pusey M
    J Struct Biol; 2003 Apr; 142(1):180-7. PubMed ID: 12718930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient macromolecular crystallization using microfluidics and randomized design of screening reagents.
    May AP; Segelke BW
    Methods Mol Biol; 2008; 426():387-402. PubMed ID: 18542878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crystallization with microfluidic free-interface diffusion.
    Segelke B
    Expert Rev Proteomics; 2005 Apr; 2(2):165-72. PubMed ID: 15892562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallization via tubing microfluidics permits both in situ and ex situ X-ray diffraction.
    Gerard CJJ; Ferry G; Vuillard LM; Boutin JA; Chavas LMG; Huet T; Ferte N; Grossier R; Candoni N; Veesler S
    Acta Crystallogr F Struct Biol Commun; 2017 Oct; 73(Pt 10):574-578. PubMed ID: 28994406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.
    Zheng B; Roach LS; Ismagilov RF
    J Am Chem Soc; 2003 Sep; 125(37):11170-1. PubMed ID: 16220918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deliberate approach to screening for initial crystallization conditions of biological macromolecules.
    Luft JR; Collins RJ; Fehrman NA; Lauricella AM; Veatch CK; DeTitta GT
    J Struct Biol; 2003 Apr; 142(1):170-9. PubMed ID: 12718929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein crystal growth with a two-liquid system and stirring solution.
    Adachi H; Takano K; Matsumura H; Inoue T; Mori Y; Sasaki T
    J Synchrotron Radiat; 2004 Jan; 11(Pt 1):121-4. PubMed ID: 14646151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics in structural biology: smaller, faster em leader better.
    Hansen C; Quake SR
    Curr Opin Struct Biol; 2003 Oct; 13(5):538-44. PubMed ID: 14568607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.
    Gicquel Y; Schubert R; Kapis S; Bourenkov G; Schneider T; Perbandt M; Betzel C; Chapman HN; Heymann M
    J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallization and Structural Determination of an Enzyme:Substrate Complex by Serial Crystallography in a Versatile Microfluidic Chip.
    de Wijn R; Rollet K; Olieric V; Hennig O; Thome N; Noûs C; Paulus C; Lorber B; Betat H; Mörl M; Sauter C
    J Vis Exp; 2021 Mar; (169):. PubMed ID: 33818565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidics: Magnetic chaperones for droplets.
    Buriak JM
    Nat Mater; 2004 Dec; 3(12):847-9. PubMed ID: 15573111
    [No Abstract]   [Full Text] [Related]  

  • 12. Mimer: an automated spreadsheet-based crystallization screening system.
    Brodersen DE; Andersen GR; Andersen CB
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Jul; 69(Pt 7):815-20. PubMed ID: 23832216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization of macromolecules.
    Messick T; Marmorstein R
    Curr Protoc Protein Sci; 2004 Feb; Chapter 17():17.4.1-17.4.25. PubMed ID: 18429252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of protein crystal quality by forced flow solution.
    Kadowaki A; Yoshizaki I; Rong L; Komatsu H; Odawara O; Yoda S
    J Synchrotron Radiat; 2004 Jan; 11(Pt 1):38-40. PubMed ID: 14646129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data collection from crystals grown in microfluidic droplets.
    Babnigg G; Sherrell D; Kim Y; Johnson JL; Nocek B; Tan K; Axford D; Li H; Bigelow L; Welk L; Endres M; Owen RL; Joachimiak A
    Acta Crystallogr D Struct Biol; 2022 Aug; 78(Pt 8):997-1009. PubMed ID: 35916224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryo-cooling in macromolecular crystallography: advantages, disadvantages and optimization.
    Juers DH; Matthews BW
    Q Rev Biophys; 2004 May; 37(2):105-19. PubMed ID: 15999418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular assembly: nanofibre whirlpools.
    Amabilino DB
    Nat Mater; 2007 Dec; 6(12):924-5. PubMed ID: 18059296
    [No Abstract]   [Full Text] [Related]  

  • 18. Fabrication of colloidal crystal beads by a drop-breaking technique and their application as bioassays.
    Sun C; Zhao XW; Zhao YJ; Zhu R; Gu ZZ
    Small; 2008 May; 4(5):592-6. PubMed ID: 18431722
    [No Abstract]   [Full Text] [Related]  

  • 19. Coupling High Throughput Microfluidics and Small-Angle X-ray Scattering to Study Protein Crystallization from Solution.
    Pham N; Radajewski D; Round A; Brennich M; Pernot P; Biscans B; Bonneté F; Teychené S
    Anal Chem; 2017 Feb; 89(4):2282-2287. PubMed ID: 28192906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis.
    Dhouib K; Khan Malek C; Pfleging W; Gauthier-Manuel B; Duffait R; Thuillier G; Ferrigno R; Jacquamet L; Ohana J; Ferrer JL; Théobald-Dietrich A; Giegé R; Lorber B; Sauter C
    Lab Chip; 2009 May; 9(10):1412-21. PubMed ID: 19417908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.