These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 12719267)

  • 41. Finite-element analysis of the adhesion-cytoskeleton-nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model.
    Jean RP; Chen CS; Spector AA
    J Biomech Eng; 2005 Aug; 127(4):594-600. PubMed ID: 16121529
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fragility and mechanosensing in a thermalized cytoskeleton model with forced protein unfolding.
    Hoffman BD; Massiera G; Crocker JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 1):051906. PubMed ID: 18233686
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation.
    Zeng Y; Yip AK; Teo SK; Chiam KH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):49-59. PubMed ID: 21308391
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous tether extraction contributes to neutrophil rolling stabilization: a model study.
    Yu Y; Shao JY
    Biophys J; 2007 Jan; 92(2):418-29. PubMed ID: 17071668
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Micropipette aspiration of substrate-attached cells to estimate cell stiffness.
    Oh MJ; Kuhr F; Byfield F; Levitan I
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051713
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling 3-D deformation of outer hair cells and their production of the active force in the cochlea.
    Spector AA; Ameen M; Schmiedt RA
    Biomech Model Mechanobiol; 2002 Oct; 1(2):123-35. PubMed ID: 14595545
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinematics of cytoplasmic deformation in neutrophils during active motion.
    Simon SI; Schmid-Schönbein GW
    J Biomech Eng; 1990 Aug; 112(3):303-10. PubMed ID: 2214712
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The mechanochemistry of cytoskeletal force generation.
    Maraldi M; Garikipati K
    Biomech Model Mechanobiol; 2015 Jan; 14(1):59-72. PubMed ID: 24796414
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neutrophil morphology and migration are affected by substrate elasticity.
    Oakes PW; Patel DC; Morin NA; Zitterbart DP; Fabry B; Reichner JS; Tang JX
    Blood; 2009 Aug; 114(7):1387-95. PubMed ID: 19491394
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration.
    Diz-Muñoz A; Thurley K; Chintamen S; Altschuler SJ; Wu LF; Fletcher DA; Weiner OD
    PLoS Biol; 2016 Jun; 14(6):e1002474. PubMed ID: 27280401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluid shear-induced activation and cleavage of CD18 during pseudopod retraction by human neutrophils.
    Shin HY; Simon SI; Schmid-Schönbein GW
    J Cell Physiol; 2008 Feb; 214(2):528-36. PubMed ID: 17676580
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neutrophil migration under spatially-varying chemoattractant gradient profiles.
    Halilovic I; Wu J; Alexander M; Lin F
    Biomed Microdevices; 2015; 17(3):9963. PubMed ID: 25998723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Technical advance: Inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments.
    Paschke S; Weidner AF; Paust T; Marti O; Beil M; Ben-Chetrit E
    J Leukoc Biol; 2013 Nov; 94(5):1091-6. PubMed ID: 23901122
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension.
    Charras GT; Williams BA; Sims SM; Horton MA
    Biophys J; 2004 Oct; 87(4):2870-84. PubMed ID: 15454477
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis.
    Malech HL; Root RK; Gallin JI
    J Cell Biol; 1977 Dec; 75(3):666-93. PubMed ID: 562885
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanical models of pseudopod formation.
    Skalak R; Skierczynski BA; Wung SL; Chien S; Usami S
    Blood Cells; 1993; 19(2):389-97; discussion 398-9. PubMed ID: 8312571
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stress fluctuations and motion of cytoskeletal-bound markers.
    Raupach C; Zitterbart DP; Mierke CT; Metzner C; Müller FA; Fabry B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011918. PubMed ID: 17677505
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanics of neutrophil phagocytosis: behavior of the cortical tension.
    Herant M; Heinrich V; Dembo M
    J Cell Sci; 2005 May; 118(Pt 9):1789-97. PubMed ID: 15827090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Depolymerization-driven flow in nematode spermatozoa relates crawling speed to size and shape.
    Zajac M; Dacanay B; Mohler WA; Wolgemuth CW
    Biophys J; 2008 May; 94(10):3810-23. PubMed ID: 18227129
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Models of cytoskeletal mechanics of adherent cells.
    Stamenović D; Ingber DE
    Biomech Model Mechanobiol; 2002 Jun; 1(1):95-108. PubMed ID: 14586710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.