BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12719423)

  • 21. Differential role of mannose and glucose trimming in the ER degradation of asialoglycoprotein receptor subunits.
    Ayalon-Soffer M; Shenkman M; Lederkremer GZ
    J Cell Sci; 1999 Oct; 112 ( Pt 19)():3309-18. PubMed ID: 10504336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assembly, target-signaling and intracellular transport of tyrosinase gene family proteins in the initial stage of melanosome biogenesis.
    Jimbow K; Park JS; Kato F; Hirosaki K; Toyofuku K; Hua C; Yamashita T
    Pigment Cell Res; 2000 Aug; 13(4):222-9. PubMed ID: 10952389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of calnexin in the glycan-independent quality control of proteolipid protein.
    Swanton E; High S; Woodman P
    EMBO J; 2003 Jun; 22(12):2948-58. PubMed ID: 12805210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome.
    Liu Y; Choudhury P; Cabral CM; Sifers RN
    J Biol Chem; 1999 Feb; 274(9):5861-7. PubMed ID: 10026209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organizational diversity among distinct glycoprotein endoplasmic reticulum-associated degradation programs.
    Cabral CM; Liu Y; Moremen KW; Sifers RN
    Mol Biol Cell; 2002 Aug; 13(8):2639-50. PubMed ID: 12181335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycoprotein quality control in the endoplasmic reticulum. Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits.
    Fagioli C; Sitia R
    J Biol Chem; 2001 Apr; 276(16):12885-92. PubMed ID: 11278527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum.
    Di Jeso B; Ulianich L; Pacifico F; Leonardi A; Vito P; Consiglio E; Formisano S; Arvan P
    Biochem J; 2003 Mar; 370(Pt 2):449-58. PubMed ID: 12401114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ubiquitin-dependent and -independent proteasomal degradation of apoB associated with endoplasmic reticulum and Golgi apparatus, respectively, in HepG2 cells.
    Liao W; Chang BH; Mancini M; Chan L
    J Cell Biochem; 2003 Aug; 89(5):1019-29. PubMed ID: 12874835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chaperone interactions of the metalloproteinase meprin A in the secretory or proteasomal-degradative pathway.
    Tsukuba T; Kadowaki T; Hengst JA; Bond JS
    Arch Biochem Biophys; 2002 Jan; 397(2):191-8. PubMed ID: 11795871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cotranslational maturation of the type I membrane glycoprotein tyrosinase: the heat shock protein 70 system hands off to the lectin-based chaperone system.
    Wang N; Daniels R; Hebert DN
    Mol Biol Cell; 2005 Aug; 16(8):3740-52. PubMed ID: 15958486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular and biological control of melanogenesis through tyrosinase genes and intrinsic and extrinsic regulatory factors.
    Mishima Y
    Pigment Cell Res; 1994 Dec; 7(6):376-87. PubMed ID: 7761345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation.
    Parodi AJ
    Biochem J; 2000 May; 348 Pt 1(Pt 1):1-13. PubMed ID: 10794707
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Degradation of mutated bovine pancreatic trypsin inhibitor in the yeast vacuole suggests post-endoplasmic reticulum protein quality control.
    Coughlan CM; Walker JL; Cochran JC; Wittrup KD; Brodsky JL
    J Biol Chem; 2004 Apr; 279(15):15289-97. PubMed ID: 14744871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin.
    Oda Y; Hosokawa N; Wada I; Nagata K
    Science; 2003 Feb; 299(5611):1394-7. PubMed ID: 12610305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein specific N-glycosylation of tyrosinase and tyrosinase-related protein-1 in B16 mouse melanoma cells.
    Negroiu G; Branza-Nichita N; Petrescu AJ; Dwek RA; Petrescu SM
    Biochem J; 1999 Dec; 344 Pt 3(Pt 3):659-65. PubMed ID: 10585852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum.
    Williams DB
    J Cell Sci; 2006 Feb; 119(Pt 4):615-23. PubMed ID: 16467570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin-proteasome pathway.
    Ando H; Wen ZM; Kim HY; Valencia JC; Costin GE; Watabe H; Yasumoto K; Niki Y; Kondoh H; Ichihashi M; Hearing VJ
    Biochem J; 2006 Feb; 394(Pt 1):43-50. PubMed ID: 16232122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution, transport, and degradation of apolipoprotein B-100 in HepG2 cells.
    Sakata N; Phillips TE; Dixon JL
    J Lipid Res; 2001 Dec; 42(12):1947-58. PubMed ID: 11734567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular functions of N-linked glycans.
    Helenius A; Aebi M
    Science; 2001 Mar; 291(5512):2364-9. PubMed ID: 11269317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein.
    Fiebiger E; Story C; Ploegh HL; Tortorella D
    EMBO J; 2002 Mar; 21(5):1041-53. PubMed ID: 11867532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.