These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12720345)

  • 1. Characteristic electrochemical responses of polymer microchannel-microelectrode chips.
    Ueno K; Kim HB; Kitamura N
    Anal Chem; 2003 May; 75(9):2086-91. PubMed ID: 12720345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocyanation of pyrene across an oil/water interface in a polymer microchannel chip.
    Ueno K; Kitagawa F; Kitamura N
    Lab Chip; 2002 Nov; 2(4):231-4. PubMed ID: 15100816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A spectroelectrochemical study on perylene cation radical in polymer microchannel-microelectrode chips.
    Ueno K; Kitamura N
    Analyst; 2003 Dec; 128(12):1401-5. PubMed ID: 14737222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes.
    Ordeig O; Godino N; del Campo J; Muñoz FX; Nikolajeff F; Nyholm L
    Anal Chem; 2008 May; 80(10):3622-32. PubMed ID: 18386910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical detection in polymer microchannels.
    Rossier JS; Roberts MA; Ferrigno R; Girault HH
    Anal Chem; 1999 Oct; 71(19):4294-9. PubMed ID: 21662857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous and non-aqueous electrochemistry.
    Illa X; Ordeig O; Snakenborg D; Romano-Rodríguez A; Compton RG; Kutter JP
    Lab Chip; 2010 May; 10(10):1254-61. PubMed ID: 20445877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory and experiments of transport at channel microband electrodes under laminar flows. 2. Electrochemical regimes at double microband assemblies under steady state.
    Amatore C; Da Mota N; Lemmer C; Pebay C; Sella C; Thouin L
    Anal Chem; 2008 Dec; 80(24):9483-90. PubMed ID: 19007242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An application of plastic microchannel-microheater chips to a thermal synthetic reaction.
    Kitamura N; Hosoda Y; Ueno K; Iwata S
    Anal Sci; 2004 May; 20(5):783-6. PubMed ID: 15171280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channel shape effects on the solution-flow characteristics and the liquid/liquid extraction efficiency in polymer microchannel chips.
    Ueno K; Kim HB; Kitamura N
    Anal Sci; 2003 Mar; 19(3):391-4. PubMed ID: 12675346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microchip reversed-phase liquid chromatography with packed column and electrochemical flow cell using polystyrene/poly(dimethylsiloxane).
    Ishida A; Natsume M; Kamidate T
    J Chromatogr A; 2008 Dec; 1213(2):209-17. PubMed ID: 18992887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of potential distribution and the influence of ion complexation on diffusion potentials at aqueous-aqueous boundaries within a dual-stream microfluidic structure.
    Strutwolf J; Manning M; Arrigan DW
    Anal Chem; 2009 Oct; 81(20):8373-9. PubMed ID: 19769337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemistry of TEMPO in the aqueous liquid/vapor interfacial region: measurements of the lateral mobility and kinetics of surface partitioning.
    Glandut N; Monson CF; Majda M
    Langmuir; 2006 Dec; 22(25):10697-704. PubMed ID: 17129048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses.
    Kovarik ML; Torrence NJ; Spence DM; Martin RS
    Analyst; 2004 May; 129(5):400-5. PubMed ID: 15116230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow injection based microfluidic device with carbon nanotube electrode for rapid salbutamol detection.
    Karuwan C; Wisitsoraat A; Maturos T; Phokharatkul D; Sappat A; Jaruwongrungsee K; Lomas T; Tuantranont A
    Talanta; 2009 Sep; 79(4):995-1000. PubMed ID: 19615498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of multistage distillation in a microfluidic chip.
    Lam KF; Cao E; Sorensen E; Gavriilidis A
    Lab Chip; 2011 Apr; 11(7):1311-7. PubMed ID: 21327250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully integrated three-dimensional electrodes for electrochemical detection in microchips: fabrication, characterization, and applications.
    Pai RS; Walsh KM; Crain MM; Roussel TJ; Jackson DJ; Baldwin RP; Keynton RS; Naber JF
    Anal Chem; 2009 Jun; 81(12):4762-9. PubMed ID: 19459620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a gold microelectrode for amperometric detection on a polycarbonate electrophoresis chip by photodirected electroless plating.
    Kong Y; Chen H; Wang Y; Soper SA
    Electrophoresis; 2006 Jul; 27(14):2940-50. PubMed ID: 16688700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.