These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12720345)

  • 21. Fabrication and evaluation of single- and dual-channel (Pi-design) microchip electrophoresis with electrochemical detection.
    Pozo-Ayuso DF; Castaño-Alvarez M; Fernández-la-Villa A; García-Granda M; Fernández-Abedul MT; Costa-García A; Rodríguez-García J
    J Chromatogr A; 2008 Feb; 1180(1-2):193-202. PubMed ID: 18177663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theory and experiments of transport at channel microband electrodes under laminar flow. 3. Electrochemical detection at electrode arrays under steady state.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2010 Mar; 82(6):2434-40. PubMed ID: 20184349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Local feedback mode of scanning electrochemical microscopy for electrochemical characterization of one-dimensional nanostructure: theory and experiment with nanoband electrode as model substrate.
    Xiong H; Gross DA; Guo J; Amemiya S
    Anal Chem; 2006 Mar; 78(6):1946-57. PubMed ID: 16536432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. AC electroosmotic micromixer for chemical processing in a microchannel.
    Sasaki N; Kitamori T; Kim HB
    Lab Chip; 2006 Apr; 6(4):550-4. PubMed ID: 16572218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient streaming potential in a finite length microchannel.
    Mansouri A; Scheuerman C; Bhattacharjee S; Kwok DY; Kostiuk LW
    J Colloid Interface Sci; 2005 Dec; 292(2):567-80. PubMed ID: 16061246
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of gravity-driven microfluidic device.
    Yamada H; Yoshida Y; Terada N; Hagihara S; Komatsu T; Terasawa A
    Rev Sci Instrum; 2008 Dec; 79(12):124301. PubMed ID: 19123582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microchannel-electrode alignment and separation parameters comparison in microchip capillary electrophoresis by scanning electrochemical microscopy.
    Wang K; Xia XH
    J Chromatogr A; 2006 Mar; 1110(1-2):222-6. PubMed ID: 16458907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices.
    Chun MS; Shim MS; Choi NW
    Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications.
    Irawan R; Tay CM; Tjin SC; Fu CY
    Lab Chip; 2006 Aug; 6(8):1095-8. PubMed ID: 16874385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes.
    Chu H; Doh I; Cho YH
    Lab Chip; 2009 Mar; 9(5):686-91. PubMed ID: 19224018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interface motion of capillary-driven flow in rectangular microchannel.
    Ichikawa N; Hosokawa K; Maeda R
    J Colloid Interface Sci; 2004 Dec; 280(1):155-64. PubMed ID: 15476786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An electrochemical pumping system for on-chip gradient generation.
    Xie J; Miao Y; Shih J; He Q; Liu J; Tai YC; Lee TD
    Anal Chem; 2004 Jul; 76(13):3756-63. PubMed ID: 15228351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microfluidic chip for electrochemical conversions in drug metabolism studies.
    Odijk M; Baumann A; Lohmann W; van den Brink FT; Olthuis W; Karst U; van den Berg A
    Lab Chip; 2009 Jun; 9(12):1687-93. PubMed ID: 19495451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry.
    Yang Y; Li C; Kameoka J; Lee KH; Craighead HG
    Lab Chip; 2005 Aug; 5(8):869-76. PubMed ID: 16027939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical performance of 8-hydroxy-2'-deoxyguanosine and its detection at poly(3-methylthiophene) modified glassy carbon electrode.
    Li TH; Jia WL; Wang HS; Liu RM
    Biosens Bioelectron; 2007 Feb; 22(7):1245-50. PubMed ID: 16777402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.
    Flachsbart BR; Wong K; Iannacone JM; Abante EN; Vlach RL; Rauchfuss PA; Bohn PW; Sweedler JV; Shannon MA
    Lab Chip; 2006 May; 6(5):667-74. PubMed ID: 16652183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polymer channel chips as versatile tools in microchemistry.
    Kitamura N; Ueno K; Kim HB
    Anal Sci; 2008 Jun; 24(6):701-10. PubMed ID: 18544856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multi-array sensor via the integration of acrylic molecularly imprinted photoresists and ultramicroelectrodes on a glass chip.
    Huang HC; Huang SY; Lin CI; Lee YD
    Anal Chim Acta; 2007 Jan; 582(1):137-46. PubMed ID: 17386485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.