These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1272091)

  • 21. The thoracic windows for electrical ventricular defibrillation current.
    Geddes LA; Grubbs SS; Wilcox PG; Tacker WA
    Am Heart J; 1977 Jul; 94(1):67-72. PubMed ID: 868745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A percutaneous catheter-based system for the measurement of potential gradients applicable to the study of transthoracic defibrillation.
    Rosborough JP; Deno DC; Walker RG; Niemann JT
    Pacing Clin Electrophysiol; 2007 Feb; 30(2):166-74. PubMed ID: 17338711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of thoracic current flow in pigs for the study of defibrillation and cardioversion.
    Yoon RS; DeMonte TP; Hasanov KF; Jorgenson DB; Joy ML
    IEEE Trans Biomed Eng; 2003 Oct; 50(10):1167-73. PubMed ID: 14560770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defibrillation current and impedance are determinants of defibrillation energy requirements.
    Dorian P; Wang MJ
    Pacing Clin Electrophysiol; 1988 Nov; 11(11 Pt 2):1996-2001. PubMed ID: 2463578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transthoracic impedance does not affect defibrillation, resuscitation or survival in patients with out-of-hospital cardiac arrest treated with a non-escalating biphasic waveform defibrillator.
    White RD; Blackwell TH; Russell JK; Snyder DE; Jorgenson DB
    Resuscitation; 2005 Jan; 64(1):63-9. PubMed ID: 15629557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax.
    Panescu D; Webster JG; Tompkins WJ; Stratbucker RA
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):185-92. PubMed ID: 7868146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequential cardiac morphologic alterations induced in dogs by single transthoracic damped sinusoidal waveform defibrillator shocks.
    Van Vleet JF; Tacker WA; Geddes LA; Ferrans VJ
    Am J Vet Res; 1978 Feb; 39(2):271-8. PubMed ID: 629462
    [No Abstract]   [Full Text] [Related]  

  • 28. Potassium efflux from myocardial cells induced by defibrillator shock.
    Niebauer MJ; Geddes LA; Babbs CF
    Med Instrum; 1986; 20(3):135-7. PubMed ID: 3724586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Considerations in the development of the automatic implantable defibrillator.
    Langer A; Heilman MS; Mower MM; Mirowski M
    Med Instrum; 1976; 10(3):163-7. PubMed ID: 1272092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Linearity of transthoracic conductance with respect to electrode force and area during high-voltage defibrillation shocks.
    Lerman BB; Ng KT; Deale OC
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):801-4. PubMed ID: 7927402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional cardiac depression caused by defibrillator shocks. Quantitation of the safety factor for electrical defibrillation.
    Niebauer MJ; Babbs CF; Geddes LA; Carter JE; Bourland JD
    Jpn Heart J; 1984 Sep; 25(5):773-81. PubMed ID: 6512993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrocardiographic and serum enzymic alterations associated with cardiac alterations induced in dogs by single transthoracic damped sinusoidal defibrillator shocks of various strengths.
    Tacker WA; Van Vleet JF; Geddes LA
    Am Heart J; 1979 Aug; 98(2):185-93. PubMed ID: 453021
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Dynamics of variation in the resistance of the chest exposed to Gurvich-Venin bipolar defibrillation pulse].
    Vostrikov VA; Gorbunov BB; Gusev AN; Gusev DV; Itkin GP; Konysheva EG; Mamekin KA; Nesterenko IV; Petukhova MN; Selishchev SV; Telyshev DV; Trukhmanov SB
    Med Tekh; 2009; (6):33-6. PubMed ID: 20099658
    [No Abstract]   [Full Text] [Related]  

  • 34. Therapeutic indices for transchest defibrillator shocks: effective, damaging, and lethal electrical doses.
    Babbs CF; Tacker WA; VanVleet JF; Bourland JD; Geddes LA
    Am Heart J; 1980 Jun; 99(6):734-8. PubMed ID: 7377095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localisation of cardiac related impedance changes in the thorax.
    Eyüboğlu BM; Brown BH; Barber DC; Seagar AD
    Clin Phys Physiol Meas; 1987; 8 Suppl A():167-73. PubMed ID: 3568566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Do physiological changes in pregnancy change defibrillation energy requirements?
    Nanson J; Elcock D; Williams M; Deakin CD
    Br J Anaesth; 2001 Aug; 87(2):237-9. PubMed ID: 11493495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional uniform grid modeling of electrical defibrillation on a data parallel computer.
    Gao S; Nadeem A; Deale OC; Lerman BB; Ng KT
    Comput Biol Med; 1995 May; 25(3):335-48. PubMed ID: 7554850
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of the relationship between transthoracic impedance variations and thoracic diameter changes.
    Kawakami K; Watanabe A; Ikeda K; Kanno R; Kira S
    Med Biol Eng; 1974 Jul; 12(4):446-53. PubMed ID: 4465560
    [No Abstract]   [Full Text] [Related]  

  • 39. Relative impedance of gels to defibrillator discharge.
    Ewy GA; Taren D
    Med Instrum; 1979; 13(5):295-6. PubMed ID: 502929
    [No Abstract]   [Full Text] [Related]  

  • 40. Comparison of the effects of removal of chest hair with not doing so before external defibrillation on transthoracic impedance.
    Sado DM; Deakin CD; Petley GW; Clewlow F
    Am J Cardiol; 2004 Jan; 93(1):98-100. PubMed ID: 14697478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.