These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 12721114)

  • 1. The vasoactive peptide urotensin II stimulates spontaneous release from frog motor nerve terminals.
    Brailoiu E; Brailoiu GC; Miyamoto MD; Dun NJ
    Br J Pharmacol; 2003 Apr; 138(8):1580-8. PubMed ID: 12721114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inositol derivatives modulate spontaneous transmitter release at the frog neuromuscular junction.
    Brailoiu E; Miyamoto MD; Dun NJ
    Neuropharmacology; 2003 Oct; 45(5):691-701. PubMed ID: 12941382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extra- and intracellular sphingosylphosphorylcholine promote spontaneous transmitter release from frog motor nerve endings.
    Brailoiu E; Dun NJ
    Mol Pharmacol; 2003 Jun; 63(6):1430-6. PubMed ID: 12761354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraterminal Ca(2+) and spontaneous transmitter release at the frog neuromuscular junction.
    Angleson JK; Betz WJ
    J Neurophysiol; 2001 Jan; 85(1):287-94. PubMed ID: 11152728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length.
    Grinnell AD; Pawson PA
    J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin increases transmitter release by mobilizing quanta at the frog motor nerve terminal.
    Brailoiu E; Miyamoto MD; Dun NJ
    Br J Pharmacol; 2002 Nov; 137(5):719-27. PubMed ID: 12381686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Ca2+-induced Ca2+ release mechanism involved in asynchronous exocytosis at frog motor nerve terminals.
    Narita K; Akita T; Osanai M; Shirasaki T; Kijima H; Kuba K
    J Gen Physiol; 1998 Nov; 112(5):593-609. PubMed ID: 9806968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of heavy metals on synaptic transmission: a review.
    Cooper GP; Manalis RS
    Neurotoxicology; 1983; 4(4):69-83. PubMed ID: 6322059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency and amplitude gradients of spontaneous release along the length of the frog neuromuscular junction.
    Robitaille R; Tremblay JP
    Synapse; 1989; 3(4):291-307. PubMed ID: 2568018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sodium and calcium channel blockade on the increase in spontaneous transmitter release produced by the mitochondrial inhibitor, dinitrophenol.
    Moffatt EJ; Miyamoto MD
    J Pharmacol Exp Ther; 1988 Feb; 244(2):613-8. PubMed ID: 2450196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depolarization reverses age-related decrease of spontaneous transmitter release.
    Alshuaib WB; Fahim MA
    J Appl Physiol (1985); 1991 May; 70(5):2066-71. PubMed ID: 1677936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of action of lead on neuromuscular junctions.
    Atchison WD; Narahashi T
    Neurotoxicology; 1984; 5(3):267-82. PubMed ID: 6097847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transduction mechanism involving the presynaptic adenosine receptor at mouse motor nerve terminals.
    Chen H; Singh YN; Dryden WF
    Neurosci Lett; 1989 Jan; 96(3):318-22. PubMed ID: 2717058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mefloquine selectively increases asynchronous acetylcholine release from motor nerve terminals.
    McArdle JJ; Sellin LC; Coakley KM; Potian JG; Hognason K
    Neuropharmacology; 2006 Mar; 50(3):345-53. PubMed ID: 16288931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phosphatidylinositol 4-kinase inhibitor phenylarsine oxide blocks evoked neurotransmitter release by reducing calcium entry through N-type calcium channels.
    Searl TJ; Silinsky EM
    Br J Pharmacol; 2000 May; 130(2):418-24. PubMed ID: 10807681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urotensin II stimulates high frequency-induced ANP secretion via PLC-PI 3K-PKC pathway.
    Gao S; Shah A; Oh YB; Park WH; Kim SH
    Peptides; 2010 Jan; 31(1):164-9. PubMed ID: 19896516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrelation between MEPP amplitude and MEPP frequency in different regions along the frog neuromuscular junction.
    Robitaille R; Tremblay JP; Grenon G
    Brain Res; 1987 Apr; 408(1-2):353-8. PubMed ID: 3036304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metals: effects on synaptic transmission.
    Cooper GP; Suszkiw JB; Manalis RS
    Neurotoxicology; 1984; 5(3):247-66. PubMed ID: 6097846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of carbacholine on spontaneous quantum secretion of a mediator from frog motor nerve endings in the presence of ouabain and in a potassium-free medium].
    Nikol'skiĭ EE; Bukharaeva EA; Badrutdinov LR
    Neirofiziologiia; 1989; 21(4):558-61. PubMed ID: 2572981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methylmercury-induced depression of neuromuscular transmission in the rat.
    Atchison WD; Narahashi T
    Neurotoxicology; 1982 Nov; 3(3):37-50. PubMed ID: 6298679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.