These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 12721440)
61. Direct hydrogen production from dilute-acid pretreated sugarcane bagasse hydrolysate using the newly isolated Thermoanaerobacterium thermosaccharolyticum MJ1. Hu BB; Zhu MJ Microb Cell Fact; 2017 May; 16(1):77. PubMed ID: 28468624 [TBL] [Abstract][Full Text] [Related]
62. Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate. Wu FC; Huang SS; Shih IL Bioresour Technol; 2014 Sep; 167():159-68. PubMed ID: 24980028 [TBL] [Abstract][Full Text] [Related]
63. Effect of dilute acid pretreatment on the conversion of barley straw with grains to fermentable sugars. Yang M; Kuittinen S; Zhang J; Keinänen M; Pappinen A Bioresour Technol; 2013 Oct; 146():444-450. PubMed ID: 23955092 [TBL] [Abstract][Full Text] [Related]
64. Pretreatment Efficiency Using Autoclave High-Pressure Steam and Ultrasonication in Sugar Production from Liquid Hydrolysates and Access to the Residual Solid Fractions of Wheat Bran and Oat Hulls. Debiagi F; Madeira TB; Nixdorf SL; Mali S Appl Biochem Biotechnol; 2020 Jan; 190(1):166-181. PubMed ID: 31309413 [TBL] [Abstract][Full Text] [Related]
65. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076 [TBL] [Abstract][Full Text] [Related]
66. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Madhavan A; Srivastava A; Kondo A; Bisaria VS Crit Rev Biotechnol; 2012 Mar; 32(1):22-48. PubMed ID: 21204601 [TBL] [Abstract][Full Text] [Related]
67. Preparation and evaluation of lignocellulosic biomass hydrolysates for growth by ethanologenic yeasts. Zha Y; Slomp R; van Groenestijn J; Punt PJ Methods Mol Biol; 2012; 834():245-59. PubMed ID: 22144364 [TBL] [Abstract][Full Text] [Related]
68. Obtaining fermentable sugars by dilute acid hydrolysis of hemicellulose and fast pyrolysis of cellulose. Jiang L; Zheng A; Zhao Z; He F; Li H; Liu W Bioresour Technol; 2015 Apr; 182():364-367. PubMed ID: 25690683 [TBL] [Abstract][Full Text] [Related]
69. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Ko JK; Um Y; Woo HM; Kim KH; Lee SM Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396 [TBL] [Abstract][Full Text] [Related]
70. Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Fletcher E; Gao K; Mercurio K; Ali M; Baetz K Metab Eng; 2019 Mar; 52():98-109. PubMed ID: 30471359 [TBL] [Abstract][Full Text] [Related]
71. Effect of storage conditions on the stability and fermentability of enzymatic lignocellulosic hydrolysate. Jin M; Bothfeld W; Austin S; Sato TK; La Reau A; Li H; Foston M; Gunawan C; LeDuc RD; Quensen JF; Mcgee M; Uppugundla N; Higbee A; Ranatunga R; Donald CW; Bone G; Ragauskas AJ; Tiedje JM; Noguera DR; Dale BE; Zhang Y; Balan V Bioresour Technol; 2013 Nov; 147():212-220. PubMed ID: 23999256 [TBL] [Abstract][Full Text] [Related]
72. Optimization study of ethanolic fermentation from oil palm trunk, rubberwood and mixed hardwood hydrolysates using Saccharomyces cerevisiae. Chin KL; H'ng PS; Wong LJ; Tey BT; Paridah MT Bioresour Technol; 2010 May; 101(9):3287-91. PubMed ID: 20056407 [TBL] [Abstract][Full Text] [Related]
73. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process. De Bari I; Cuna D; Di Matteo V; Liuzzi F N Biotechnol; 2014 Mar; 31(2):185-95. PubMed ID: 24378965 [TBL] [Abstract][Full Text] [Related]
74. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Meinita MD; Hong YK; Jeong GT Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):93-8. PubMed ID: 21909671 [TBL] [Abstract][Full Text] [Related]
75. Effect of fermentation conditions on the flocculation of recombinant Saccharomyces cerevisiae capable of co-fermenting glucose and xylose. Matsushika A; Morikawa H; Goshima T; Hoshino T Appl Biochem Biotechnol; 2014 Sep; 174(2):623-31. PubMed ID: 25086918 [TBL] [Abstract][Full Text] [Related]
76. Controlled fed-batch fermentations of dilute-acid hydrolysate in pilot development unit scale. Rudolf A; Galbe M; Lidén G Appl Biochem Biotechnol; 2004; 113-116():601-17. PubMed ID: 15054280 [TBL] [Abstract][Full Text] [Related]
77. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Huang S; Liu T; Peng B; Geng A Bioprocess Biosyst Eng; 2019 May; 42(5):883-896. PubMed ID: 30820665 [TBL] [Abstract][Full Text] [Related]
78. Pretreatment of lignocellulosic feedstock to produce fermentable sugars for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production using activated sludge. Yin F; Li D; Ma X; Zhang C Bioresour Technol; 2019 Oct; 290():121773. PubMed ID: 31310867 [TBL] [Abstract][Full Text] [Related]
79. Fermentation of dried distillers' grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Ezeji T; Blaschek HP Bioresour Technol; 2008 Aug; 99(12):5232-42. PubMed ID: 17967532 [TBL] [Abstract][Full Text] [Related]
80. Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Zhu JY; Pan XJ; Wang GS; Gleisner R Bioresour Technol; 2009 Apr; 100(8):2411-8. PubMed ID: 19119005 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]