BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12721457)

  • 1. A comprehensive kinetic model for dilute-acid hydrolysis of cellulose.
    Xiang Q; Kim JS; Lee YY
    Appl Biochem Biotechnol; 2003; 105 -108():337-52. PubMed ID: 12721457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass.
    Xiang Q; Lee YY; Torget RW
    Appl Biochem Biotechnol; 2004; 113-116():1127-38. PubMed ID: 15054258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous aspects of acid hydrolysis of alpha-cellulose.
    Xiang Q; Lee YY; Pettersson PO; Torget RW
    Appl Biochem Biotechnol; 2003; 105 -108():505-14. PubMed ID: 12721431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of alkaline pretreatment methods on cellulose structure and accessibility.
    Bali G; Meng X; Deneff JI; Sun Q; Ragauskas AJ
    ChemSusChem; 2015 Jan; 8(2):275-9. PubMed ID: 25421020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic model for glycan hydrolysis and formation of monosaccharides during dilute acid hydrolysis of sugarcane bagasse.
    Zhao X; Zhou Y; Liu D
    Bioresour Technol; 2012 Feb; 105():160-8. PubMed ID: 22178495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clean conversion of cellulose into fermentable glucose.
    Sun Y; Zhuang J; Lin L; Ouyang P
    Biotechnol Adv; 2009; 27(5):625-32. PubMed ID: 19409478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass.
    Kadam KL; Rydholm EC; McMillan JD
    Biotechnol Prog; 2004; 20(3):698-705. PubMed ID: 15176871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions.
    Asghari FS; Yoshida H
    Carbohydr Res; 2010 Jan; 345(1):124-31. PubMed ID: 19892325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts.
    Wang A; Zhang T
    Acc Chem Res; 2013 Jul; 46(7):1377-86. PubMed ID: 23421609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose.
    Selig MJ; Viamajala S; Decker SR; Tucker MP; Himmel ME; Vinzant TB
    Biotechnol Prog; 2007; 23(6):1333-9. PubMed ID: 17973399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions.
    Kim JS; Lee YY; Torget RW
    Appl Biochem Biotechnol; 2001; 91-93():331-40. PubMed ID: 11963862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dilute-acid hydrolysis of sugarcane bagasse at varying conditions.
    Neureiter M; Danner H; Thomasser C; Saidi B; Braun R
    Appl Biochem Biotechnol; 2002; 98-100():49-58. PubMed ID: 12018275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates.
    Nilvebrant NO; Persson P; Reimann A; De Sousa F; Gorton L; Jönsson LJ
    Appl Biochem Biotechnol; 2003; 105 -108():615-28. PubMed ID: 12721440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic modeling for enzymatic hydrolysis of pretreated creeping wild ryegrass.
    Zheng Y; Pan Z; Zhang R; Jenkins BM
    Biotechnol Bioeng; 2009 Apr; 102(6):1558-69. PubMed ID: 19061240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.
    Mu B; Xu H; Yang Y
    Bioresour Technol; 2015 Nov; 196():332-8. PubMed ID: 26253917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of acid-catalysed organosolv fractionation of wheat straw.
    Sidiras D; Koukios E
    Bioresour Technol; 2004 Aug; 94(1):91-8. PubMed ID: 15081492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simplistic modeling approach to heterogeneous dilute-acid hydrolysis of cellulose microcrystallites.
    WPettersson PO; Torget RW; Eklund R; Xiang Q; Lee YY; Zacchi G
    Appl Biochem Biotechnol; 2003; 105 -108():451-6. PubMed ID: 12721467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Effects of Isolated Lignin on Cellulose Enzymatic Hydrolysis of Corn Stover Pretreatment by NaOH Combined with Ozone.
    Fang S; Wang W; Tong S; Zhang C; Liu P
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29925811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid acid-catalyzed cellulose hydrolysis monitored by in situ ATR-IR spectroscopy.
    Zakzeski J; Grisel RJ; Smit AT; Weckhuysen BM
    ChemSusChem; 2012 Feb; 5(2):430-7. PubMed ID: 22315193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologies.
    Kumar R; Wyman CE
    Biotechnol Prog; 2009; 25(3):807-19. PubMed ID: 19504581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.