These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1272248)

  • 1. Supra-operonic clustering of genes specifying glucose dissimilation in Pseudomonas putida.
    de Torrontegui G; Diaz R; Wheelis ML; Cánovas JL
    Mol Gen Genet; 1976 Mar; 144(3):307-11. PubMed ID: 1272248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The clustering on the Pseudomonas putida chromosome of genes specifying dissimilatory functions.
    Leidigh BJ; Wheelis ML
    J Mol Evol; 1973 Nov; 2(4):235-42. PubMed ID: 4807194
    [No Abstract]   [Full Text] [Related]  

  • 3. The genetic control of dissimilatory pathways in Pseudomonas putida.
    Wheelis ML; Stanier RY
    Genetics; 1970 Oct; 66(2):245-66. PubMed ID: 5525301
    [No Abstract]   [Full Text] [Related]  

  • 4. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida.
    Rheinwald JG; Chakrabarty AM; Gunsalus IC
    Proc Natl Acad Sci U S A; 1973 Mar; 70(3):885-9. PubMed ID: 4351810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants.
    Vicente M; Cánovas JL
    J Bacteriol; 1973 Nov; 116(2):908-14. PubMed ID: 4745434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromosomal map of Pseudomonas putida PPN, and a comparison of gene order with the Pseudomonas aeruginosa PAO chromosomal map.
    Morgan AF; Dean HF
    J Gen Microbiol; 1985 Apr; 131(4):885-96. PubMed ID: 3921659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary differences in chromosomal locations of four early genes of the tryptophan pathway in fluorescent pseudomonads: DNA sequences and characterization of Pseudomonas putida trpE and trpGDC.
    Essar DW; Eberly L; Crawford IP
    J Bacteriol; 1990 Feb; 172(2):867-83. PubMed ID: 2404959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The uptake of glucose and gluconate by Pseudomonas putida.
    Vicente M; Pedro MA; Torrontegui G; Cánovas JL
    Mol Cell Biochem; 1975 Apr; 7(1):59-64. PubMed ID: 1134500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Pyrroloquinoline Quinone-Dependent Glucose Dehydrogenase Activity in the Model Rhizosphere-Dwelling Bacterium Pseudomonas putida KT2440.
    An R; Moe LA
    Appl Environ Microbiol; 2016 Aug; 82(16):4955-64. PubMed ID: 27287323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli: sequence analysis and localization of promoters for the edd-eda operon.
    Egan SE; Fliege R; Tong S; Shibata A; Wolf RE; Conway T
    J Bacteriol; 1992 Jul; 174(14):4638-46. PubMed ID: 1624451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional Modulation of Transport- and Metabolism-Associated Gene Clusters Leading to Utilization of Benzoate in Preference to Glucose in Pseudomonas putida CSV86.
    Choudhary A; Modak A; Apte SK; Phale PS
    Appl Environ Microbiol; 2017 Oct; 83(19):. PubMed ID: 28733285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of cloned structural and regulatory genes for carbohydrate utilization in Pseudomonas aeruginosa PAO.
    Temple L; Cuskey SM; Perkins RE; Bass RC; Morales NM; Christie GE; Olsen RH; Phibbs PV
    J Bacteriol; 1990 Nov; 172(11):6396-402. PubMed ID: 2121713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The uptake of fructose by Pseudomonas putida.
    Vicente M
    Arch Microbiol; 1975; 102(2):163-6. PubMed ID: 1115560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product.
    Schell MA
    Gene; 1985; 36(3):301-9. PubMed ID: 3908220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of Pseudomonas putida RpoN sigma factor in regulation of various metabolic functions.
    Köhler T; Harayama S; Ramos JL; Timmis KN
    J Bacteriol; 1989 Aug; 171(8):4326-33. PubMed ID: 2666396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of five genes in the upper-pathway operon of TOL plasmid pWW0 from Pseudomonas putida and identification of the gene products.
    Harayama S; Rekik M; Wubbolts M; Rose K; Leppik RA; Timmis KN
    J Bacteriol; 1989 Sep; 171(9):5048-55. PubMed ID: 2549010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon).
    Furukawa K; Hirose J; Suyama A; Zaiki T; Hayashida S
    J Bacteriol; 1993 Aug; 175(16):5224-32. PubMed ID: 8349562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic evidence that catabolites of the Entner-Doudoroff pathway signal C source repression of the sigma54 Pu promoter of Pseudomonas putida.
    Velázquez F; di Bartolo I; de Lorenzo V
    J Bacteriol; 2004 Dec; 186(24):8267-75. PubMed ID: 15576775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic control of the histidine dissimilatory pathway in Pseudomonas putida.
    Leidigh BJ; Wheelis ML
    Mol Gen Genet; 1973 Feb; 120(3):201-10. PubMed ID: 4405673
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulatory circuits controlling transcription of TOL plasmid operon encoding meta-cleavage pathway for degradation of alkylbenzoates by Pseudomonas.
    Ramos JL; Mermod N; Timmis KN
    Mol Microbiol; 1987 Nov; 1(3):293-300. PubMed ID: 3448461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.