These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 12722742)

  • 41. Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media.
    Daldrup H; Shames DM; Wendland M; Okuhata Y; Link TM; Rosenau W; Lu Y; Brasch RC
    AJR Am J Roentgenol; 1998 Oct; 171(4):941-9. PubMed ID: 9762973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CEP-7055: a novel, orally active pan inhibitor of vascular endothelial growth factor receptor tyrosine kinases with potent antiangiogenic activity and antitumor efficacy in preclinical models.
    Ruggeri B; Singh J; Gingrich D; Angeles T; Albom M; Yang S; Chang H; Robinson C; Hunter K; Dobrzanski P; Jones-Bolin S; Pritchard S; Aimone L; Klein-Szanto A; Herbert JM; Bono F; Schaeffer P; Casellas P; Bourie B; Pili R; Isaacs J; Ator M; Hudkins R; Vaught J; Mallamo J; Dionne C
    Cancer Res; 2003 Sep; 63(18):5978-91. PubMed ID: 14522925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo assessment of antiangiogenic activity of SU6668 in an experimental colon carcinoma model.
    Marzola P; Degrassi A; Calderan L; Farace P; Crescimanno C; Nicolato E; Giusti A; Pesenti E; Terron A; Sbarbati A; Abrams T; Murray L; Osculati F
    Clin Cancer Res; 2004 Jan; 10(2):739-50. PubMed ID: 14760097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization.
    Goldbrunner RH; Bendszus M; Wood J; Kiderlen M; Sasaki M; Tonn JC
    Neurosurgery; 2004 Aug; 55(2):426-32; discussion 432. PubMed ID: 15271251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Effects of MRI-assayed microvascular permeability on the accumulation of vinorelbine in xenograft tumors].
    Raatschen HJ; Fu Y; Rogut V; Simon GH; Sennino B; Wolf KJ; Brasch RC
    Rofo; 2010 Feb; 182(2):133-9. PubMed ID: 19862658
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase I study of the safety, tolerability, pharmacokinetics, and pharmacodynamics of PTK787/ZK 222584 administered twice daily in patients with advanced cancer.
    Thomas AL; Morgan B; Horsfield MA; Higginson A; Kay A; Lee L; Masson E; Puccio-Pick M; Laurent D; Steward WP
    J Clin Oncol; 2005 Jun; 23(18):4162-71. PubMed ID: 15867205
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of tumor angiogenesis using dynamic enhanced magnetic resonance imaging: comparison of plasma vascular endothelial growth factor, hemodynamic, and pharmacokinetic parameters.
    Ikeda O; Nishimura R; Miyayama H; Yasunaga T; Ozaki Y; Tuji A; Yamashita Y
    Acta Radiol; 2004 Jul; 45(4):446-52. PubMed ID: 15323399
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evaluation of the Response of Intracranial Xenografts to VEGF Signaling Inhibition Using Multiparametric MRI.
    Boult JKR; Box G; Vinci M; Perryman L; Eccles SA; Jones C; Robinson SP
    Neoplasia; 2017 Sep; 19(9):684-694. PubMed ID: 28780387
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnetic resonance imaging in an experimental model of human ovarian cancer demonstrating altered microvascular permeability after inhibition of vascular endothelial growth factor.
    Gossmann A; Helbich TH; Mesiano S; Shames DM; Wendland MF; Roberts TP; Ferrara N; Jaffe RB; Brasch RC
    Am J Obstet Gynecol; 2000 Oct; 183(4):956-63. PubMed ID: 11035346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In-vivo visualization of tumor microvessel density and response to anti-angiogenic treatment by high resolution MRI in mice.
    Ullrich RT; Jikeli JF; Diedenhofen M; Böhm-Sturm P; Unruh M; Vollmar S; Hoehn M
    PLoS One; 2011 May; 6(5):e19592. PubMed ID: 21573168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo monitoring of sorafenib therapy effects on experimental prostate carcinomas using dynamic contrast-enhanced MRI and macromolecular contrast media.
    Cyran CC; Schwarz B; Paprottka PM; Sourbron S; von Einem JC; Dietrich O; Hinkel R; Clevert DA; Bruns CJ; Reiser MF; Nikolaou K; Wintersperger BJ
    Cancer Imaging; 2013 Dec; 13(4):557-66. PubMed ID: 24380871
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Vascular endothelial growth factor blockade alters magnetic resonance imaging biomarkers of vascular function and decreases barrier permeability in a rat model of lung cancer brain metastasis.
    Pishko GL; Muldoon LL; Pagel MA; Schwartz DL; Neuwelt EA
    Fluids Barriers CNS; 2015 Feb; 12():5. PubMed ID: 25879723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Magnetic resonance macromolecular agents for monitoring tumor microvessels and angiogenesis inhibition.
    Preda A; van Vliet M; Krestin GP; Brasch RC; van Dijke CF
    Invest Radiol; 2006 Mar; 41(3):325-31. PubMed ID: 16481916
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A physiologic imaging pilot study of breast cancer treated with AZD2171.
    Miller KD; Miller M; Mehrotra S; Agarwal B; Mock BH; Zheng QH; Badve S; Hutchins GD; Sledge GW
    Clin Cancer Res; 2006 Jan; 12(1):281-8. PubMed ID: 16397053
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Correlation of dynamic contrast-enhanced magnetic resonance imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media.
    Daldrup H; Shames DM; Wendland M; Okuhata Y; Link TM; Rosenau W; Lu Y; Brasch RC
    Pediatr Radiol; 1998 Feb; 28(2):67-78. PubMed ID: 9472047
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monitoring of bevacizumab-induced antiangiogenic treatment effects by "steady state" ultrasmall superparamagnetic iron oxide particles magnetic resonance imaging using robust multiecho ΔR2* relaxometry.
    Ring J; Persigehl T; Remmele S; Heindel W; Dahnke H; Bremer C
    Invest Radiol; 2011 May; 46(5):326-30. PubMed ID: 21358548
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts.
    Bhujwalla ZM; Artemov D; Natarajan K; Ackerstaff E; Solaiyappan M
    Neoplasia; 2001; 3(2):143-53. PubMed ID: 11420750
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology.
    Turetschek K; Floyd E; Helbich T; Roberts TP; Shames DM; Wendland MF; Carter WO; Brasch RC
    J Magn Reson Imaging; 2001 Sep; 14(3):237-42. PubMed ID: 11536400
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Noninvasive monitoring of radiotherapy-induced microvascular changes using dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) in a colorectal tumor model.
    Ceelen W; Smeets P; Backes W; Van Damme N; Boterberg T; Demetter P; Bouckenooghe I; De Visschere M; Peeters M; Pattyn P
    Int J Radiat Oncol Biol Phys; 2006 Mar; 64(4):1188-96. PubMed ID: 16457965
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantification of breast tumor microvascular permeability with feruglose-enhanced MR imaging: initial phase II multicenter trial.
    Daldrup-Link HE; Rydland J; Helbich TH; Bjørnerud A; Turetschek K; Kvistad KA; Kaindl E; Link TM; Staudacher K; Shames D; Brasch RC; Haraldseth O; Rummeny EJ
    Radiology; 2003 Dec; 229(3):885-92. PubMed ID: 14576446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.