These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 12723358)

  • 1. [The study of autowave mechanisms of electrocardiogram variability during high frequency arrhythmias: mathematical modeling data].
    Medvinskiĭ AB; Rusakov AV; Moskalenko AV; Fedorov MV; Panfilov AV
    Biofizika; 2003; 48(2):314-23. PubMed ID: 12723358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Negative filament tension in the Luo-Rudy model of cardiac tissue.
    Alonso S; Panfilov AV
    Chaos; 2007 Mar; 17(1):015102. PubMed ID: 17411259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics.
    Alonso S; Bär M; Panfilov AV
    Bull Math Biol; 2013 Aug; 75(8):1351-76. PubMed ID: 22829178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Quantitative analysis of variability of electrocardiograms typical for polymorphic arrhythmias].
    Moskalenko AV; Kukushkin NI; Starmer CF; Deev AA; Kukushkina KN; Medvinskiĭ AB
    Biofizika; 2001; 46(2):319-29. PubMed ID: 11357349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Is monomorphic arrhythmia monomorphic?].
    Moskalenko AV; El'kin IuE
    Biofizika; 2007; 52(2):339-43. PubMed ID: 17477064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.
    Nash MP; Panfilov AV
    Prog Biophys Mol Biol; 2004; 85(2-3):501-22. PubMed ID: 15142759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative stable scroll waves and conversion of autowave turbulence.
    Foulkes AJ; Barkley D; Biktashev VN; Biktasheva IV
    Chaos; 2010 Dec; 20(4):043136. PubMed ID: 21198106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative filament tension at high excitability in a model of cardiac tissue.
    Alonso S; Panfilov AV
    Phys Rev Lett; 2008 May; 100(21):218101. PubMed ID: 18518639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternans and the influence of ionic channel modifications: Cardiac three-dimensional simulations and one-dimensional numerical bifurcation analysis.
    Bauer S; Röder G; Bär M
    Chaos; 2007 Mar; 17(1):015104. PubMed ID: 17411261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scroll waves meandering in a model of an excitable medium.
    Rusakov A; Medvinsky AB; Panfilov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):022902. PubMed ID: 16196618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Instability of a three-dimnsional linear vortex in a simple model of a heterogenous excitable medium].
    Rusakov AV; Aliev AA; Panfilov AV; Medvinskiĭ AB
    Biofizika; 2002; 47(1):111-5. PubMed ID: 11855279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drift of Scroll Wave Filaments in an Anisotropic Model of the Left Ventricle of the Human Heart.
    Pravdin S; Dierckx H; Markhasin VS; Panfilov AV
    Biomed Res Int; 2015; 2015():389830. PubMed ID: 26539486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ECG scaling properties of cardiac arrhythmias using detrended fluctuation analysis.
    Rodriguez E; Lerma C; Echeverria JC; Alvarez-Ramirez J
    Physiol Meas; 2008 Nov; 29(11):1255-66. PubMed ID: 18843162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropy.
    Berenfeld O; Pertsov AM
    J Theor Biol; 1999 Aug; 199(4):383-94. PubMed ID: 10441456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency pacing of scroll waves in a three-dimensional slab model of cardiac tissue.
    Pravdin SF; Nezlobinsky TV; Panfilov AV; Dierckx H
    Phys Rev E; 2021 Apr; 103(4-1):042420. PubMed ID: 34005903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra- and interreader variability in QT interval measurement by tangent and threshold methods in a central electrocardiogram laboratory.
    Panicker GK; Karnad DR; Natekar M; Kothari S; Narula D; Lokhandwala Y
    J Electrocardiol; 2009; 42(4):348-52. PubMed ID: 19261293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time domain parameters can be estimated with less statistical error than frequency domain parameters in the analysis of heart rate variability.
    Kuss O; Schumann B; Kluttig A; Greiser KH; Haerting J
    J Electrocardiol; 2008; 41(4):287-91. PubMed ID: 18367200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The rotation of autowaves as a result of their penetration through a system of unexcitable obstacles. A mechanism of arrhythmias associated with aging].
    Rusakov AV; Medvinskiĭ AB
    Biofizika; 2005; 50(1):127-31. PubMed ID: 15759512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics and cardiac arrhythmias.
    Qu Z; Weiss JN
    J Cardiovasc Electrophysiol; 2006 Sep; 17(9):1042-9. PubMed ID: 16899089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autowave tunneling through a non-excitable area of active media.
    Poptsova MS; Guria GT
    Gen Physiol Biophys; 1997 Sep; 16(3):241-61. PubMed ID: 9452946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.