These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 12724153)

  • 1. Synaptic plasticity in the amygdala: comparisons with hippocampus.
    Chapman PF; Ramsay MF; Krezel W; Knevett SG
    Ann N Y Acad Sci; 2003 Apr; 985():114-24. PubMed ID: 12724153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advancement in mechanisms of long-term potentiation].
    Xu L; Zhang JT
    Sheng Li Ke Xue Jin Zhan; 2001 Oct; 32(4):298-301. PubMed ID: 12545854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic transmission and plasticity in the amygdala. An emerging physiology of fear conditioning circuits.
    Maren S
    Mol Neurobiol; 1996 Aug; 13(1):1-22. PubMed ID: 8892333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance of Metabotropic Glutamate Receptor-Mediated Long-Term Depression (mGlu-LTD) of Excitatory Synaptic Transmission in the Rat Hippocampus After Prenatal Immune Challenge.
    Cavalier M; Ben Sedrine A; Thevenet L; Crouzin N; Guiramand J; de Jésus Ferreira MC; Cohen-Solal C; Barbanel G; Vignes M
    Neurochem Res; 2019 Mar; 44(3):609-616. PubMed ID: 29353373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of postsynaptic calcium in the induction of long-term potentiation.
    Malenka RC
    Mol Neurobiol; 1991; 5(2-4):289-95. PubMed ID: 1668390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of hippocampal long-term potentiation by the amygdala: a synaptic mechanism linking emotion and memory.
    Abe K
    Jpn J Pharmacol; 2001 May; 86(1):18-22. PubMed ID: 11430468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct contributions of ventral CA1/amygdala co-activation to the induction and maintenance of synaptic plasticity.
    Chong YS; Wong LW; Gaunt J; Lee YJ; Goh CS; Morris RGM; Ch'ng TH; Sajikumar S
    Cereb Cortex; 2023 Jan; 33(3):676-690. PubMed ID: 35253866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms.
    Malenka RC; Nicoll RA
    Trends Neurosci; 1993 Dec; 16(12):521-7. PubMed ID: 7509523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala.
    Faber ES; Delaney AJ; Sah P
    Nat Neurosci; 2005 May; 8(5):635-41. PubMed ID: 15852010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucocorticoid receptors and beta-adrenoceptors in basolateral amygdala modulate synaptic plasticity in hippocampal dentate gyrus, but not in area CA1.
    Vouimba RM; Yaniv D; Richter-Levin G
    Neuropharmacology; 2007 Jan; 52(1):244-52. PubMed ID: 16890964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic induction and expression of NMDA-dependent LTP.
    Paré D
    Trends Neurosci; 2004 Aug; 27(8):440-1. PubMed ID: 15271488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term potentiation and the role of N-methyl-D-aspartate receptors.
    Volianskis A; France G; Jensen MS; Bortolotto ZA; Jane DE; Collingridge GL
    Brain Res; 2015 Sep; 1621():5-16. PubMed ID: 25619552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential roles of basolateral and central amygdala on the effects of uncontrollable stress on hippocampal synaptic plasticity.
    Yang CH; Huang CC; Hsu KS
    Hippocampus; 2008; 18(6):548-63. PubMed ID: 18306298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of tetanic stimulation on plasticity of remote synapses in the hippocampus-perirhinal cortex-amygdala network.
    Supcun B; Ghadiri MK; Zeraati M; Stummer W; Speckmann EJ; Gorji A
    Synapse; 2012 Nov; 66(11):965-74. PubMed ID: 22886744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A form of long-lasting, learning-related synaptic plasticity in the hippocampus induced by heterosynaptic low-frequency pairing.
    Huang YY; Pittenger C; Kandel ER
    Proc Natl Acad Sci U S A; 2004 Jan; 101(3):859-64. PubMed ID: 14711997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses.
    Li HB; Jackson MF; Yang K; Trepanier C; Salter MW; Orser BA; Macdonald JF
    Hippocampus; 2011 Oct; 21(10):1053-61. PubMed ID: 20865743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic mechanisms in long-term potentiation.
    Rossi P; D'Angelo E
    Funct Neurol; 1992; 7(1):57-70. PubMed ID: 1316304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium sensor regulation of the CaV2.1 Ca2+ channel contributes to long-term potentiation and spatial learning.
    Nanou E; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13209-13214. PubMed ID: 27799552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of predator stress and the antidepressant tianeptine on physiological plasticity in the hippocampus and basolateral amygdala.
    Vouimba RM; Muñoz C; Diamond DM
    Stress; 2006 Mar; 9(1):29-40. PubMed ID: 16753931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing synaptic plasticity and memory: a role for small-conductance Ca(2+)-activated K+ channels.
    Tzounopoulos T; Stackman R
    Neuroscientist; 2003 Dec; 9(6):434-9. PubMed ID: 14678575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.