These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 12724374)

  • 21. Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae.
    Yu J; Peñaloza-Vázquez A; Chakrabarty AM; Bender CL
    Mol Microbiol; 1999 Aug; 33(4):712-20. PubMed ID: 10447881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Pseudomonas syringae pv. tomato DC3000 type III effector HopF2 has a putative myristoylation site required for its avirulence and virulence functions.
    Robert-Seilaniantz A; Shan L; Zhou JM; Tang X
    Mol Plant Microbe Interact; 2006 Feb; 19(2):130-8. PubMed ID: 16529375
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Namgung M; Lim YJ; Kang MK; Oh CS; Park DH
    J Microbiol Biotechnol; 2019 Dec; 29(12):1975-1981. PubMed ID: 31601061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate.
    Charkowski AO; Alfano JR; Preston G; Yuan J; He SY; Collmer A
    J Bacteriol; 1998 Oct; 180(19):5211-7. PubMed ID: 9748456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The DeltafliD mutant of Pseudomonas syringae pv. tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells.
    Shimizu R; Taguchi F; Marutani M; Mukaihara T; Inagaki Y; Toyoda K; Shiraishi T; Ichinose Y
    Mol Genet Genomics; 2003 Apr; 269(1):21-30. PubMed ID: 12715150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploring Pseudomonas syringae pv. tomato biofilm-like aggregate formation in susceptible and PTI-responding Arabidopsis thaliana.
    Xiao WN; Nunn GM; Fufeng AB; Belu N; Brookman RK; Halim A; Krysmanski EC; Cameron RK
    Mol Plant Pathol; 2024 Jan; 25(1):e13403. PubMed ID: 37988240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. First Report of bacterial speck caused by
    Valenzuela M; Fuentes B; Alfaro JF; Galvez E; Salinas A; Besoain XA; Seeger M
    Plant Dis; 2021 Dec; ():. PubMed ID: 34931890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pseudomonas syringae pv. tomato DC3000 type III effector HopAA1-1 functions redundantly with chlorosis-promoting factor PSPTO4723 to produce bacterial speck lesions in host tomato.
    Munkvold KR; Russell AB; Kvitko BH; Collmer A
    Mol Plant Microbe Interact; 2009 Nov; 22(11):1341-55. PubMed ID: 19810804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway.
    Zhao Y; Thilmony R; Bender CL; Schaller A; He SY; Howe GA
    Plant J; 2003 Nov; 36(4):485-99. PubMed ID: 14617079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A virus-induced gene silencing screen identifies a role for Thylakoid Formation1 in Pseudomonas syringae pv tomato symptom development in tomato and Arabidopsis.
    Wangdi T; Uppalapati SR; Nagaraj S; Ryu CM; Bender CL; Mysore KS
    Plant Physiol; 2010 Jan; 152(1):281-92. PubMed ID: 19915014
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pseudomonas syringae lytic transglycosylases coregulated with the type III secretion system contribute to the translocation of effector proteins into plant cells.
    Oh HS; Kvitko BH; Morello JE; Collmer A
    J Bacteriol; 2007 Nov; 189(22):8277-89. PubMed ID: 17827286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diverse AvrPtoB homologs from several Pseudomonas syringae pathovars elicit Pto-dependent resistance and have similar virulence activities.
    Lin NC; Abramovitch RB; Kim YJ; Martin GB
    Appl Environ Microbiol; 2006 Jan; 72(1):702-12. PubMed ID: 16391110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence that the Pseudomonas syringae pv. syringae hrp-linked hrmA gene encodes an Avr-like protein that acts in an hrp-dependent manner within tobacco cells.
    Alfano JR; Klm HS; Delaney TP; Collmer A
    Mol Plant Microbe Interact; 1997 Jul; 10(5):580-8. PubMed ID: 9204563
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense.
    Bashan Y; De-Bashan LE
    Appl Environ Microbiol; 2002 Jun; 68(6):2637-43. PubMed ID: 12039714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000.
    Li Z; Tian Y; Xu J; Fu X; Gao J; Wang B; Han H; Wang L; Peng R; Yao Q
    Plant Physiol Biochem; 2018 Nov; 132():683-695. PubMed ID: 30146417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pto- and Prf-mediated recognition of AvrPto and AvrPtoB restricts the ability of diverse pseudomonas syringae pathovars to infect tomato.
    Lin NC; Martin GB
    Mol Plant Microbe Interact; 2007 Jul; 20(7):806-15. PubMed ID: 17601168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A translocated protein tyrosine phosphatase of Pseudomonas syringae pv. tomato DC3000 modulates plant defence response to infection.
    Bretz JR; Mock NM; Charity JC; Zeyad S; Baker CJ; Hutcheson SW
    Mol Microbiol; 2003 Jul; 49(2):389-400. PubMed ID: 12828637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness.
    Bronstein PA; Marrichi M; Cartinhour S; Schneider DJ; DeLisa MP
    J Bacteriol; 2005 Dec; 187(24):8450-61. PubMed ID: 16321949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The phytotoxin coronatine from Pseudomonas syringae pv. tomato DC3000 functions as a virulence factor and influences defence pathways in edible brassicas.
    Elizabeth SV; Bender CL
    Mol Plant Pathol; 2007 Jan; 8(1):83-92. PubMed ID: 20507480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae.
    Peñaloza-Vázquez A; Fakhr MK; Bailey AM; Bender CL
    Microbiology (Reading); 2004 Aug; 150(Pt 8):2727-2737. PubMed ID: 15289569
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.