These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12724397)

  • 21. Glycerol utilization by Rhizobium leguminosarum requires an ABC transporter and affects competition for nodulation.
    Ding H; Yip CB; Geddes BA; Oresnik IJ; Hynes MF
    Microbiology (Reading); 2012 May; 158(Pt 5):1369-1378. PubMed ID: 22343359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the cycHJKL genes involved in cytochrome c biogenesis and symbiotic nitrogen fixation in Rhizobium leguminosarum.
    Delgado MJ; Yeoman KH; Wu G; Vargas C; Davies AE; Poole RK; Johnston AW; Downie JA
    J Bacteriol; 1995 Sep; 177(17):4927-34. PubMed ID: 7665469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A monocarboxylate permease of Rhizobium leguminosarum is the first member of a new subfamily of transporters.
    Hosie AH; Allaway D; Poole PS
    J Bacteriol; 2002 Oct; 184(19):5436-48. PubMed ID: 12218032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspartate aminotransferase of
    Ledermann R; Bourdès A; Schuller M; Jorrin B; Ahel I; Poole PS
    Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39073398
    [No Abstract]   [Full Text] [Related]  

  • 25. A dominant-negative fur mutation in Bradyrhizobium japonicum.
    Benson HP; LeVier K; Guerinot ML
    J Bacteriol; 2004 Mar; 186(5):1409-14. PubMed ID: 14973020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptional control of the Bradyrhizobium japonicum irr gene requires repression by fur and Antirepression by Irr.
    Hohle TH; O'Brian MR
    J Biol Chem; 2010 Aug; 285(34):26074-80. PubMed ID: 20573962
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel autoregulation mechanism of fnrN expression in Rhizobium leguminosarum bv viciae.
    Colombo MV; Gutiérrez D; Palacios JM; Imperial J; Ruiz-Argüeso T
    Mol Microbiol; 2000 Apr; 36(2):477-86. PubMed ID: 10792733
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation.
    Cheng G; Karunakaran R; East AK; Munoz-Azcarate O; Poole PS
    FEMS Microbiol Lett; 2017 Apr; 364(8):. PubMed ID: 28333211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Symbiotic plasmid is required for NolR to fully repress nodulation genes in Rhizobium leguminosarum A34.
    Li F; Hou B; Hong G
    Acta Biochim Biophys Sin (Shanghai); 2008 Oct; 40(10):901-7. PubMed ID: 18850056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional and expression analysis of the metal-inducible dmeRF system from Rhizobium leguminosarum bv. viciae.
    Rubio-Sanz L; Prieto RI; Imperial J; Palacios JM; Brito B
    Appl Environ Microbiol; 2013 Oct; 79(20):6414-22. PubMed ID: 23934501
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple copies of rosR and pssA genes enhance exopolysaccharide production, symbiotic competitiveness and clover nodulation in Rhizobium leguminosarum bv. trifolii.
    Janczarek M; Jaroszuk-Sciseł J; Skorupska A
    Antonie Van Leeuwenhoek; 2009 Nov; 96(4):471-86. PubMed ID: 19588265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci.
    Lithgow JK; Wilkinson A; Hardman A; Rodelas B; Wisniewski-Dyé F; Williams P; Downie JA
    Mol Microbiol; 2000 Jul; 37(1):81-97. PubMed ID: 10931307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Rhizobium leguminosarum bv. trifolii RosR: transcriptional regulator involved in exopolysaccharide production.
    Janczarek M; Skorupska A
    Mol Plant Microbe Interact; 2007 Jul; 20(7):867-81. PubMed ID: 17601173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beyond the Fur paradigm: iron-controlled gene expression in rhizobia.
    Rudolph G; Hennecke H; Fischer HM
    FEMS Microbiol Rev; 2006 Jul; 30(4):631-48. PubMed ID: 16774589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Host-specific regulation of symbiotic nitrogen fixation in Rhizobium leguminosarum biovar trifolii.
    Miller SH; Elliot RM; Sullivan JT; Ronson CW
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3184-3195. PubMed ID: 17768261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterisation of SalRAB a salicylic acid inducible positively regulated efflux system of Rhizobium leguminosarum bv viciae 3841.
    Tett AJ; Karunakaran R; Poole PS
    PLoS One; 2014; 9(8):e103647. PubMed ID: 25133394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three separate pathways in
    Kleetz J; Mizza A-S; Shevyreva I; Welter L; Brocks C; Hemschemeier A; Aktas M; Narberhaus F
    Appl Environ Microbiol; 2024 Sep; 90(9):e0059024. PubMed ID: 39120150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum.
    Nienaber A; Hennecke H; Fischer HM
    Mol Microbiol; 2001 Aug; 41(4):787-800. PubMed ID: 11532144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins.
    Frederix M; Edwards A; Swiderska A; Stanger A; Karunakaran R; Williams A; Abbruscato P; Sanchez-Contreras M; Poole PS; Downie JA
    Mol Microbiol; 2014 Aug; 93(3):464-78. PubMed ID: 24942546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a {gamma}-aminobutyric acid transport system of Rhizobium leguminosarum bv. viciae 3841.
    White JP; Prell J; Ramachandran VK; Poole PS
    J Bacteriol; 2009 Mar; 191(5):1547-55. PubMed ID: 19103927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.