BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 12724400)

  • 1. Rad53 checkpoint kinase phosphorylation site preference identified in the Swi6 protein of Saccharomyces cerevisiae.
    Sidorova JM; Breeden LL
    Mol Cell Biol; 2003 May; 23(10):3405-16. PubMed ID: 12724400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in Saccharomyces cerevisiae.
    Sidorova JM; Breeden LL
    Genes Dev; 1997 Nov; 11(22):3032-45. PubMed ID: 9367985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint.
    Schwartz MF; Duong JK; Sun Z; Morrow JS; Pradhan D; Stern DF
    Mol Cell; 2002 May; 9(5):1055-65. PubMed ID: 12049741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of Saccharomyces cerevisiae.
    Scott KL; Plon SE
    Mol Cell Biol; 2003 Jul; 23(13):4522-31. PubMed ID: 12808094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle-dependent phosphorylation of Rad53 kinase by Cdc5 and Cdc28 modulates checkpoint adaptation.
    Schleker T; Shimada K; Sack R; Pike BL; Gasser SM
    Cell Cycle; 2010 Jan; 9(2):350-63. PubMed ID: 20046099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation.
    Sweeney FD; Yang F; Chi A; Shabanowitz J; Hunt DF; Durocher D
    Curr Biol; 2005 Aug; 15(15):1364-75. PubMed ID: 16085488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct phosphatases mediate the deactivation of the DNA damage checkpoint kinase Rad53.
    Travesa A; Duch A; Quintana DG
    J Biol Chem; 2008 Jun; 283(25):17123-30. PubMed ID: 18441009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precocious S-phase entry in budding yeast prolongs replicative state and increases dependence upon Rad53 for viability.
    Sidorova JM; Breeden LL
    Genetics; 2002 Jan; 160(1):123-36. PubMed ID: 11805050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Mpk1 mitogen-activated protein kinase binding to the Swi4 transcription factor and its regulation by a novel caffeine-induced phosphorylation.
    Truman AW; Kim KY; Levin DE
    Mol Cell Biol; 2009 Dec; 29(24):6449-61. PubMed ID: 19805511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of Rph1, a damage-responsive repressor of PHR1 in Saccharomyces cerevisiae, is dependent upon Rad53 kinase.
    Kim EM; Jang YK; Park SD
    Nucleic Acids Res; 2002 Feb; 30(3):643-8. PubMed ID: 11809875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway.
    Sugimoto K; Ando S; Shimomura T; Matsumoto K
    Mol Cell Biol; 1997 Oct; 17(10):5905-14. PubMed ID: 9315648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rad53 kinase activation-independent replication checkpoint function of the N-terminal forkhead-associated (FHA1) domain.
    Pike BL; Tenis N; Heierhorst J
    J Biol Chem; 2004 Sep; 279(38):39636-44. PubMed ID: 15271990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of quantitative mass spectrometric analysis to elucidate the mechanisms of phospho-priming and auto-activation of the checkpoint kinase Rad53 in vivo.
    Chen ES; Hoch NC; Wang SC; Pellicioli A; Heierhorst J; Tsai MD
    Mol Cell Proteomics; 2014 Feb; 13(2):551-65. PubMed ID: 24302356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of Sae2 Mediates Forkhead-associated (FHA) Domain-specific Interaction and Regulates Its DNA Repair Function.
    Liang J; Suhandynata RT; Zhou H
    J Biol Chem; 2015 Apr; 290(17):10751-63. PubMed ID: 25762720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis of the essential s phase function of the rad53 checkpoint kinase.
    Hoch NC; Chen ES; Buckland R; Wang SC; Fazio A; Hammet A; Pellicioli A; Chabes A; Tsai MD; Heierhorst J
    Mol Cell Biol; 2013 Aug; 33(16):3202-13. PubMed ID: 23754745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin-cdk2 substrate whose expression blocks S-phase progression.
    Hall C; Nelson DM; Ye X; Baker K; DeCaprio JA; Seeholzer S; Lipinski M; Adams PD
    Mol Cell Biol; 2001 Mar; 21(5):1854-65. PubMed ID: 11238922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae.
    Chen YC; Kenworthy J; Gabrielse C; Hänni C; Zegerman P; Weinreich M
    Genetics; 2013 Jun; 194(2):389-401. PubMed ID: 23564203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FHA domain-mediated DNA checkpoint regulation of Rad53.
    Schwartz MF; Lee SJ; Duong JK; Eminaga S; Stern DF
    Cell Cycle; 2003; 2(4):384-96. PubMed ID: 12851493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Dbf4 mutant contributes to bypassing the Rad53-mediated block of origins of replication in response to genotoxic stress.
    Duch A; Palou G; Jonsson ZO; Palou R; Calvo E; Wohlschlegel J; Quintana DG
    J Biol Chem; 2011 Jan; 286(4):2486-91. PubMed ID: 21098477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mdt1, a novel Rad53 FHA1 domain-interacting protein, modulates DNA damage tolerance and G(2)/M cell cycle progression in Saccharomyces cerevisiae.
    Pike BL; Yongkiettrakul S; Tsai MD; Heierhorst J
    Mol Cell Biol; 2004 Apr; 24(7):2779-88. PubMed ID: 15024067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.