These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 12724877)

  • 1. Do weak adapting backgrounds uncover multiple components in the electroretinogram of the horseshoe crab?
    Lucas JC; Weiner WW; Ahmed J
    Biomed Sci Instrum; 2003; 39():105-10. PubMed ID: 12724877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual efference neuromodulates retinal timing: in vivo roles of octopamine, substance P, circadian phase, and efferent activation in Limulus.
    Bolbecker AR; Lim-Kessler CC; Li J; Swan A; Lewis A; Fleets J; Wasserman GS
    J Neurophysiol; 2009 Aug; 102(2):1132-8. PubMed ID: 19535477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light intensity appears to be more important than an endogenous seasonal clock for regulating structural rhythms in the lateral eye of the horseshoe crab.
    Zarse CA; Deaton EA; Weiner WW
    Biomed Sci Instrum; 2004; 40():407-12. PubMed ID: 15133992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The scotopic threshold response of the dark-adapted electroretinogram of the mouse.
    Saszik SM; Robson JG; Frishman LJ
    J Physiol; 2002 Sep; 543(Pt 3):899-916. PubMed ID: 12231647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial control of photomechanical movements in the lateral eye of the American horseshoe crab, Limulus polyphemus.
    Ankrom LP; Chamberlain SC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):203-9. PubMed ID: 11976888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation-dependent differences in electroretinographic latency patterns in uniform and variegated horseshoe crabs.
    Kim B; Wasserman GS
    Biol Signals Recept; 1998; 7(4):227-34. PubMed ID: 9730582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of post-receptoral cells to the a-wave of the human photopic electroretinogram.
    Bradshaw K
    Vision Res; 2007 Oct; 47(22):2878-88. PubMed ID: 17850841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitude increase of the multifocal electroretinogram during light adaptation.
    Kondo M; Miyake Y; Piao CH; Tanikawa A; Horiguchi M; Terasaki H
    Invest Ophthalmol Vis Sci; 1999 Oct; 40(11):2633-7. PubMed ID: 10509660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable bellows cup electrode demonstrates low-frequency properties of long-term electroretinographic recordings in the Limulus lateral eye.
    Bolbecker AR; Lewis AR; Swan AA; Carlson K; Fleet JR; Beck KE; Wasserman GS
    J Neurosci Methods; 2007 Jan; 159(2):252-60. PubMed ID: 16949159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms controlling the sensitivity of the Limulus lateral eye in natural lighting.
    Pieprzyk AR; Weiner WW; Chamberlain SC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Aug; 189(8):643-53. PubMed ID: 12827424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual efference in Limulus: in vitro temperature-dependent neuromodulation of photoreceptor potential timing by octopamine and substance P.
    Lim-Kessler CC; Bolbecker AR; Li J; Wasserman GS
    Vis Neurosci; 2008; 25(1):83-94. PubMed ID: 18282313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERG findings in three hypothyroid adult dogs with and without levothyroxine treatment.
    Durieux P; Rigaudière F; LeGargasson JF; Rosolen SG
    Vet Ophthalmol; 2008; 11(6):406-11. PubMed ID: 19046283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Categorical and prolonged potentials are evoked when brief, intermediate-intensity flashes stimulate horseshoe crab lateral eye photoreceptors during octopamine neuromodulation.
    Lim CC; Wasserman GS
    Biol Signals Recept; 2001; 10(6):399-415. PubMed ID: 11721095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Step response of mouse rod photoreceptors modeled in terms of elemental photic signals.
    Silva GA; Pepperberg DR
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):3-12. PubMed ID: 14723488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a technique for recording the focal rod ERG.
    Binns A; Margrain TH
    Ophthalmic Physiol Opt; 2006 Jan; 26(1):71-9. PubMed ID: 16390485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal adaptation in the human retina: a study of the single oscillatory response in dark adaptation and mesopic background illumination.
    Lundström AL; Wang L; Wachtmeister L
    Acta Ophthalmol Scand; 2007 Nov; 85(7):756-63. PubMed ID: 17488317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circadian rhythms in the lateral eye of the Japanese horseshoe crab.
    Saito T; Yamamoto T; Powers MK; Barlow RB
    Biol Bull; 1997 Oct; 193(2):200-1. PubMed ID: 9390384
    [No Abstract]   [Full Text] [Related]  

  • 18. Using the horseshoe crab, Limulus Polyphemus, in vision research.
    Liu JS; Passaglia CL
    J Vis Exp; 2009 Jul; (29):. PubMed ID: 19578331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electroretinogram components in Abyssinian cats with hereditary retinal degeneration.
    Kang Derwent JJ; Padnick-Silver L; McRipley M; Giuliano E; Linsenmeier RA; Narfström K
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3673-82. PubMed ID: 16877442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The specific characteristics of the vertebrate electroretinogram evoked by x-rays].
    Savchenko BN
    Fiziol Zh SSSR Im I M Sechenova; 1991 Aug; 77(8):99-106. PubMed ID: 1668593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.