These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12724887)

  • 1. Digital signal processing methods for the evaluation of Blood Volume Pulse (BVP) waveform changes due to exercise.
    Li C; Zhai J; Barreto A
    Biomed Sci Instrum; 2003; 39():163-8. PubMed ID: 12724887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delay measurement in dual blood volume pulse monitoring using adaptive signal processing techniques.
    Barreto AB; Aguilar CD; Jakubzick EE
    Biomed Sci Instrum; 1997; 33():332-7. PubMed ID: 9731381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new two-pulse synthesis model for digital volume pulse signal analysis.
    Goswami D; Chaudhuri K; Mukherjee J
    Cardiovasc Eng; 2010 Sep; 10(3):109-17. PubMed ID: 20734136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The differences in waveform between photoplethysmography pulse wave and radial pulse wave in movement station.
    Li K; Zhang S; Yang L; Luo Z; Gu G
    Biomed Mater Eng; 2014; 24(6):2657-64. PubMed ID: 25226969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibrated photoplethysmographic estimation of digital pulse volume and arterial compliance.
    Raamat R; Jagomägi K; Talts J
    Clin Physiol Funct Imaging; 2007 Nov; 27(6):354-62. PubMed ID: 17944657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time discrete, near infrared photoplethysmography (NIRP) for non-invasive investigation of the volume pulse in man.
    Christ F; Athelogou M; Niklas M; Baschnegger H; Moser CM; Peter K; Messmer K
    Eur J Med Res; 1996 Feb; 1(5):237-43. PubMed ID: 9374444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of local mild cold exposure on pulse transit time.
    Zhang XY; Zhang YT
    Physiol Meas; 2006 Jul; 27(7):649-60. PubMed ID: 16705262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. User stress detection in human-computer interactions.
    Zhai J; Barreto AB; Chin C; Li C
    Biomed Sci Instrum; 2005; 41():277-82. PubMed ID: 15850118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulse wave velocity and digital volume pulse as indirect estimators of blood pressure: pilot study on healthy volunteers.
    Padilla JM; Berjano EJ; Sáiz J; Rodriguez R; Fácila L
    Cardiovasc Eng; 2009 Sep; 9(3):104-12. PubMed ID: 19657733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contour analysis of the photoplethysmographic pulse measured at the finger.
    Millasseau SC; Ritter JM; Takazawa K; Chowienczyk PJ
    J Hypertens; 2006 Aug; 24(8):1449-56. PubMed ID: 16877944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of amplitude-based and slope-based algorithms to determine beat-to-beat finger arterial compliance during handgrip exercise.
    Raamat R; Talts J; Jagomägi K
    Med Eng Phys; 2008 Jan; 30(1):67-74. PubMed ID: 17306598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in the arteriolar volume pulse of the finger during various degrees of tilt using near infra-red and red photoplethysmography.
    Christ F; Nehring I; Abicht J; Baranov V; Kotov A; Gartside I; Gamble J; Messmer K
    Eur J Med Res; 1998 May; 3(5):249-55. PubMed ID: 9580571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA; Redmond SJ; Lovell NH
    Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection method to minimize variability in photoplethysmographic signals for timing-related measurement.
    Foo JY; Wilson SJ
    J Med Eng Technol; 2006; 30(2):93-6. PubMed ID: 16531348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in left ventricular ejection time and pulse transit time derived from finger photoplethysmogram and electrocardiogram during moderate haemorrhage.
    Middleton PM; Chan GS; O'Lone E; Steel E; Carroll R; Celler BG; Lovell NH
    Clin Physiol Funct Imaging; 2009 May; 29(3):163-9. PubMed ID: 19170720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of respiratory rate on the variability of blood volume pulse characteristics.
    Selvaraj N; Jaryal AK; Santhosh J; Deepak KK; Anand S
    J Med Eng Technol; 2009; 33(5):370-5. PubMed ID: 19440917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stroke volume monitored by modeling flow from finger arterial pressure waves mirrors blood volume withdrawn by phlebotomy.
    Leonetti P; Audat F; Girard A; Laude D; Lefrère F; Elghozi JL
    Clin Auton Res; 2004 Jun; 14(3):176-81. PubMed ID: 15241646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse wave analysis is a reproducible technique for measuring central blood pressure during hemodynamic perturbations induced by exercise.
    Holland DJ; Sacre JW; McFarlane SJ; Coombes JS; Sharman JE
    Am J Hypertens; 2008 Oct; 21(10):1100-6. PubMed ID: 18719622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive monitoring by photoplethysmography.
    Sahni R
    Clin Perinatol; 2012 Sep; 39(3):573-83. PubMed ID: 22954270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.