These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 12725760)

  • 41. Parietal versus temporal lobe components in spatial cognition: Setting the mid-point of a horizontal line.
    Oliveri M; Vallar G
    J Neuropsychol; 2009 Sep; 3(Pt 2):201-11. PubMed ID: 19338724
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stages of self-motion processing in primate posterior parietal cortex.
    Bremmer F; Duhamel JR; Ben Hamed S; Graf W
    Int Rev Neurobiol; 2000; 44():173-98. PubMed ID: 10605646
    [No Abstract]   [Full Text] [Related]  

  • 43. Cerebral lateralization index based on intensity of bold signal of FMRI.
    Lim DW; Min BC; Kim HJ; Choi MH; Lee SJ; Jun JH; Lee B; Chung SC
    Int J Neurosci; 2008 Nov; 118(11):1628-42. PubMed ID: 18853338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing.
    Astafiev SV; Shulman GL; Stanley CM; Snyder AZ; Van Essen DC; Corbetta M
    J Neurosci; 2003 Jun; 23(11):4689-99. PubMed ID: 12805308
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Processing the spatial configuration of complex actions involves right posterior parietal cortex: An fMRI study with clinical implications.
    Weiss PH; Rahbari NN; Lux S; Pietrzyk U; Noth J; Fink GR
    Hum Brain Mapp; 2006 Dec; 27(12):1004-14. PubMed ID: 16639741
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals.
    Davranche K; Nazarian B; Vidal F; Coull J
    J Cogn Neurosci; 2011 Nov; 23(11):3318-30. PubMed ID: 21452942
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Parietal rTMS distorts the mental number line: simulating 'spatial' neglect in healthy subjects.
    Göbel SM; Calabria M; Farnè A; Rossetti Y
    Neuropsychologia; 2006; 44(6):860-8. PubMed ID: 16260006
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Occipital-parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity.
    Indovina I; Macaluso E
    Magn Reson Imaging; 2004 Dec; 22(10):1477-86. PubMed ID: 15707797
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dissociating the neural mechanisms of distance and spatial reference frames.
    Lane AR; Ball K; Ellison A
    Neuropsychologia; 2015 Jul; 74():42-9. PubMed ID: 25541500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Parieto-occipital cortex activation during self-generated eye movements in the dark.
    Law I; Svarer C; Rostrup E; Paulson OB
    Brain; 1998 Nov; 121 ( Pt 11)():2189-200. PubMed ID: 9827777
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Far-space neglect in conjunction but not feature search following transcranial magnetic stimulation over right posterior parietal cortex.
    Mahayana IT; Liu CL; Chang CF; Hung DL; Tzeng OJ; Juan CH; Muggleton NG
    J Neurophysiol; 2014 Feb; 111(4):705-14. PubMed ID: 24259544
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The neural substrate of gesture recognition.
    Villarreal M; Fridman EA; Amengual A; Falasco G; Gerschcovich ER; Ulloa ER; Leiguarda RC
    Neuropsychologia; 2008; 46(9):2371-82. PubMed ID: 18433807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neural substrates for visual pattern recognition learning in Igo.
    Itoh K; Kitamura H; Fujii Y; Nakada T
    Brain Res; 2008 Aug; 1227():162-73. PubMed ID: 18621033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks.
    Kim J; Whyte J; Wang J; Rao H; Tang KZ; Detre JA
    Neuroimage; 2006 May; 31(1):376-85. PubMed ID: 16427324
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reference frames for spatial cognition: different brain areas are involved in viewer-, object-, and landmark-centered judgments about object location.
    Committeri G; Galati G; Paradis AL; Pizzamiglio L; Berthoz A; LeBihan D
    J Cogn Neurosci; 2004 Nov; 16(9):1517-35. PubMed ID: 15601516
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Imagined tool-use in near and far space modulates the extra-striate body area.
    Tomasino B; Weiss PH; Fink GR
    Neuropsychologia; 2012 Aug; 50(10):2467-76. PubMed ID: 22749971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neural mechanisms underlying reaching for remembered targets cued kinesthetically or visually in left or right hemispace.
    Butler AJ; Fink GR; Dohle C; Wunderlich G; Tellmann L; Seitz RJ; Zilles K; Freund HJ
    Hum Brain Mapp; 2004 Mar; 21(3):165-77. PubMed ID: 14755836
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Visuospatial neglect in near and far space: dissociation between line bisection and letter cancellation.
    Keller I; Schindler I; Kerkhoff G; von Rosen F; Golz D
    Neuropsychologia; 2005; 43(5):724-31. PubMed ID: 15721185
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A functional MRI study of high-level cognition. I. The game of chess.
    Atherton M; Zhuang J; Bart WM; Hu X; He S
    Brain Res Cogn Brain Res; 2003 Mar; 16(1):26-31. PubMed ID: 12589885
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shifting visual attention in space: an electrophysiological analysis using high spatial resolution mapping.
    Hopf JM; Mangun GR
    Clin Neurophysiol; 2000 Jul; 111(7):1241-57. PubMed ID: 10880800
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.