These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12725779)

  • 1. Electromyogram recordings from freely moving animals.
    Whelan PJ
    Methods; 2003 Jun; 30(2):127-41. PubMed ID: 12725779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods for chronic recording of EMG activity from large numbers of hindlimb muscles in awake rhesus macaques.
    Hudson HM; Griffin DM; Belhaj-Saïf A; Lee SP; Cheney PD
    J Neurosci Methods; 2010 Jun; 189(2):153-61. PubMed ID: 20346976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Telemetry system to record force and EMG from cat ankle extensor and tibialis anterior muscles.
    Herzog W; Stano A; Leonard TR
    J Biomech; 1993 Dec; 26(12):1463-71. PubMed ID: 8308051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new electrode configuration for recording electromyographic activity in behaving mice.
    Pearson KG; Acharya H; Fouad K
    J Neurosci Methods; 2005 Oct; 148(1):36-42. PubMed ID: 15908013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term spinal reflex studies in awake behaving mice.
    Carp JS; Tennissen AM; Chen XY; Schalk G; Wolpaw JR
    J Neurosci Methods; 2005 Dec; 149(2):134-43. PubMed ID: 16026848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EMG-force relation in dynamically contracting cat plantaris muscle.
    Herzog W; Sokolosky J; Zhang YT; Guimarães AC
    J Electromyogr Kinesiol; 1998 Jun; 8(3):147-55. PubMed ID: 9678149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the function of the obturator internus muscle in humans: observations with development and validation of an electromyography recording technique.
    Hodges PW; McLean L; Hodder J
    J Electromyogr Kinesiol; 2014 Aug; 24(4):489-96. PubMed ID: 24788026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Multichannel Intramuscular Electromyogram Decomposition: Progressive FastICA Peel-Off and Performance Validation.
    Chen M; Zhang X; Zhou P
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):76-84. PubMed ID: 30475723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instrumentation for ENG and EMG recordings in FES systems.
    Nikolić ZM; Popović DB; Stein RB; Kenwell Z
    IEEE Trans Biomed Eng; 1994 Jul; 41(7):703-6. PubMed ID: 7927392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?
    Armour Smith J; Kulig K
    J Electromyogr Kinesiol; 2015 Jun; 25(3):431-7. PubMed ID: 25648579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of signals and noise rejection with bipolar longitudinal intrafascicular electrodes.
    Yoshida K; Stein RB
    IEEE Trans Biomed Eng; 1999 Feb; 46(2):226-34. PubMed ID: 9932344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-pass filtering surface EMG in an attempt to better represent the signals detected at the intramuscular level.
    Brown SH; Brookham RL; Dickerson CR
    Muscle Nerve; 2010 Feb; 41(2):234-9. PubMed ID: 19722252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new technique for the selective recording of extensor carpi radialis longus and brevis EMG.
    Riek S; Carson RG; Wright A
    J Electromyogr Kinesiol; 2000 Aug; 10(4):249-53. PubMed ID: 10969198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A technique for recording the EMG of electrically stimulated skeletal muscle.
    Solomonow M; Baratta R; Miwa T; Shoji H; D'Ambrosia R
    Orthopedics; 1985 Apr; 8(4):492-5. PubMed ID: 4094990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computer based method for automated measurement of the periods of muscular activity from an EMG and its application to locomotor EMGs.
    Lidierth M
    Electroencephalogr Clin Neurophysiol; 1986 Oct; 64(4):378-80. PubMed ID: 2428587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramuscular fine-wire electromyography during cycling: repeatability, normalisation and a comparison to surface electromyography.
    Chapman AR; Vicenzino B; Blanch P; Knox JJ; Hodges PW
    J Electromyogr Kinesiol; 2010 Feb; 20(1):108-17. PubMed ID: 19339199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of chronic polyelectromyography in neurophysiological and behavioural experiments.
    Hník P; Vejsada R; Kasicki S; Afelt Z
    Physiol Bohemoslov; 1985; 34 Suppl():53-6. PubMed ID: 2941796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branched EMG electrodes for stable and selective recording of single motor unit potentials in humans.
    Christova L; Stephanova D; Kossev A
    Biomed Tech (Berl); 2007 Feb; 52(1):117-21. PubMed ID: 17313346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel electrode design for chronic recording of electromyographic activity.
    Shafford HL; Strittmatter RR; Schadt JC
    J Neurosci Methods; 2006 Sep; 156(1-2):228-30. PubMed ID: 16621006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Techniques for recording renal sympathetic nerve activity in awake, freely moving animals.
    Smith FG
    Methods; 2003 Jun; 30(2):122-6. PubMed ID: 12725778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.