These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 12725829)
1. A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. Schwarz UD J Colloid Interface Sci; 2003 May; 261(1):99-106. PubMed ID: 12725829 [TBL] [Abstract][Full Text] [Related]
3. On the modified Tabor parameter for the JKR-DMT transition in the presence of a liquid meniscus. Xu D; Liechti KM; Ravi-Chandar K J Colloid Interface Sci; 2007 Nov; 315(2):772-85. PubMed ID: 17720183 [TBL] [Abstract][Full Text] [Related]
4. Study of adhesion and friction properties on a nanoparticle gradient surface: transition from JKR to DMT contact mechanics. Ramakrishna SN; Nalam PC; Clasohm LY; Spencer ND Langmuir; 2013 Jan; 29(1):175-82. PubMed ID: 23215537 [TBL] [Abstract][Full Text] [Related]
5. Friction of polymer hydrogels studied by resonance shear measurements. Ren HY; Mizukami M; Tanabe T; Furukawa H; Kurihara K Soft Matter; 2015 Aug; 11(31):6192-200. PubMed ID: 26098710 [TBL] [Abstract][Full Text] [Related]
7. Effects of surface tension on the adhesive contact of a rigid sphere to a compliant substrate. Xu X; Jagota A; Hui CY Soft Matter; 2014 Jul; 10(26):4625-32. PubMed ID: 24832644 [TBL] [Abstract][Full Text] [Related]
8. Effects of strain-dependent surface stress on the adhesive contact of a rigid sphere to a compliant substrate. Liu Z; Jensen KE; Xu Q; Style RW; Dufresne ER; Jagota A; Hui CY Soft Matter; 2019 Mar; 15(10):2223-2231. PubMed ID: 30758375 [TBL] [Abstract][Full Text] [Related]
9. Indentation of a rigid sphere into an elastic substrate with surface tension and adhesion. Hui CY; Liu T; Salez T; Raphael E; Jagota A Proc Math Phys Eng Sci; 2015 Mar; 471(2175):20140727. PubMed ID: 25792953 [TBL] [Abstract][Full Text] [Related]
10. Deformation of contacting interface between polymer hydrogel and silica sphere studied by resonance shear measurement. Mizukami M; Ren HY; Furukawa H; Kurihara K J Chem Phys; 2018 Oct; 149(16):163327. PubMed ID: 30384699 [TBL] [Abstract][Full Text] [Related]
11. Calculation of normal contact forces between silica nanospheres. Sun W; Zeng Q; Yu A; Kendall K Langmuir; 2013 Jun; 29(25):7825-37. PubMed ID: 23687956 [TBL] [Abstract][Full Text] [Related]
12. A Maugis-Dugdale cohesive solution for adhesion of a surface with a dimple. Papangelo A; Ciavarella M J R Soc Interface; 2017 Feb; 14(127):. PubMed ID: 28202593 [TBL] [Abstract][Full Text] [Related]
13. A General Equation for Fitting Contact Area and Friction vs Load Measurements. Carpick RW; Ogletree DF; Salmeron M J Colloid Interface Sci; 1999 Mar; 211(2):395-400. PubMed ID: 10049556 [TBL] [Abstract][Full Text] [Related]
14. A multi-asperity adhesive contact model for catheter and vascular artery contact in endovascular surgery. Xu Y; Mangla S; Gschneidner P; Shi Y Biomed Microdevices; 2023 Jan; 25(1):7. PubMed ID: 36719507 [TBL] [Abstract][Full Text] [Related]
15. Combined dry and wet adhesion between a particle and an elastic substrate. Qian J; Lin J; Shi M J Colloid Interface Sci; 2016 Dec; 483():321-333. PubMed ID: 27567029 [TBL] [Abstract][Full Text] [Related]
16. Modeling and simulation of contact parameters of elliptical and cubic nanoparticles to be used in nanomanipulation based on atomic force microscope. Korayem MH; Khaksar H; Sharahi HJ Ultramicroscopy; 2019 Nov; 206():112808. PubMed ID: 31301606 [TBL] [Abstract][Full Text] [Related]
17. Construction of adhesion maps for contacts between a sphere and a half-space: Considering size effects of the sphere. Zhang Y; Wang X; Li H; Yang W J Colloid Interface Sci; 2015 Nov; 458():255-65. PubMed ID: 26232732 [TBL] [Abstract][Full Text] [Related]
18. Adhesive Contact of Elastically Deformable Spheres: A Computational Study of Pull-Off Force and Contact Radius. Feng JQ J Colloid Interface Sci; 2001 Jun; 238(2):318-323. PubMed ID: 11374927 [TBL] [Abstract][Full Text] [Related]
19. Adhesive transition from noncontacting to contacting elastic spheres: extension of the Maugis-Dugdale model. Shi X; Polycarpou AA J Colloid Interface Sci; 2005 Jan; 281(2):449-57. PubMed ID: 15571702 [TBL] [Abstract][Full Text] [Related]