BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12725836)

  • 1. Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process.
    Rossetti D; Pepin X; Simons SJ
    J Colloid Interface Sci; 2003 May; 261(1):161-9. PubMed ID: 12725836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Pendular Liquid Bridges with a Reducing Solid-Liquid Interface.
    Pepin X; Rossetti D; Simons SJ
    J Colloid Interface Sci; 2000 Dec; 232(2):298-302. PubMed ID: 11097764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the Evolution and Rupture of Pendular Liquid Bridges in the Presence of Large Wetting Hysteresis.
    Pepin X; Rossetti D; Iveson SM; Simons SJ
    J Colloid Interface Sci; 2000 Dec; 232(2):289-297. PubMed ID: 11097763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary liquid bridges in atomic force microscopy: formation, rupture, and hysteresis.
    Men Y; Zhang X; Wang W
    J Chem Phys; 2009 Nov; 131(18):184702. PubMed ID: 19916618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
    Danov KD; Georgiev MT; Kralchevsky PA; Radulova GM; Gurkov TD; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2018 Jan; 251():80-96. PubMed ID: 29174116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rupture kinetics of liquid bridges during a pulling process: a kinetic density functional theory study.
    Men Y; Zhang X; Wang W
    J Chem Phys; 2011 Mar; 134(12):124704. PubMed ID: 21456692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles.
    Sun X; Sakai M
    Phys Rev E; 2016 Dec; 94(6-1):063301. PubMed ID: 28085306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid morphologies and capillary forces between three spherical beads.
    Semprebon C; Scheel M; Herminghaus S; Seemann R; Brinkmann M
    Phys Rev E; 2016 Jul; 94(1-1):012907. PubMed ID: 27575206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pendular, Funicular, and Capillary Bridges: Results for Two Dimensions.
    Urso ME; Lawrence CJ; Adams MJ
    J Colloid Interface Sci; 1999 Dec; 220(1):42-56. PubMed ID: 10550239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo simulation of liquid bridge rupture: application to lung physiology.
    Alencar AM; Wolfe E; Buldyrev SV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 2):026311. PubMed ID: 17025543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rupture work of pendular bridges.
    de Boer PC; de Boer MP
    Langmuir; 2008 Jan; 24(1):160-9. PubMed ID: 18041851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence mechanism of liquid bridge evaporation on the dynamic behaviour of dust particles on solar photovoltaic panels.
    Liu X; Yue S; Zhao X; Lu L; Li J
    Sci Total Environ; 2022 Apr; 817():153014. PubMed ID: 35026251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary forces between two spheres with a fixed volume liquid bridge: theory and experiment.
    Rabinovich YI; Esayanur MS; Moudgil BM
    Langmuir; 2005 Nov; 21(24):10992-7. PubMed ID: 16285763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Properties and Mechanisms Dominating Gas Hydrate Cohesion and Adhesion in Liquid and Vapor Hydrocarbon Phases.
    Hu S; Koh CA
    Langmuir; 2017 Oct; 33(42):11299-11309. PubMed ID: 28922923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of capillary bridges between nanoscale particles.
    Dörmann M; Schmid HJ
    Langmuir; 2014 Feb; 30(4):1055-62. PubMed ID: 24417253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary Forces between Concave Gripper and Spherical Particle for Micro-Objects Gripping.
    Fan Z; Liu Z; Huang C; Zhang W; Lv Z; Wang L
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparisons of liquid and gaseous microdrops deposited on surfaces via a retreating tip.
    Huynh HS; Guan JP; Vuong T; Ng TW
    Langmuir; 2013 Sep; 29(37):11615-22. PubMed ID: 23924057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheology of particle/water/oil three-phase dispersions: Electrostatic vs. capillary bridge forces.
    Georgiev MT; Danov KD; Kralchevsky PA; Gurkov TD; Krusteva DP; Arnaudov LN; Stoyanov SD; Pelan EG
    J Colloid Interface Sci; 2018 Mar; 513():515-526. PubMed ID: 29179092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.