These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 12725870)
1. Organization of multiple cytochrome P450s with NADPH-cytochrome P450 reductase in membranes. Backes WL; Kelley RW Pharmacol Ther; 2003 May; 98(2):221-33. PubMed ID: 12725870 [TBL] [Abstract][Full Text] [Related]
2. One-electron reductive bioactivation of 2,3,5,6-tetramethylbenzoquinone by cytochrome P450. Goeptar AR; te Koppele JM; van Maanen JM; Zoetemelk CE; Vermeulen NP Biochem Pharmacol; 1992 Jan; 43(2):343-52. PubMed ID: 1310854 [TBL] [Abstract][Full Text] [Related]
3. P450BM-3; a tale of two domains--or is it three? Peterson JA; Sevrioukova I; Truan G; Graham-Lorence SE Steroids; 1997 Jan; 62(1):117-23. PubMed ID: 9029725 [TBL] [Abstract][Full Text] [Related]
5. Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Yamazaki H; Nakamura M; Komatsu T; Ohyama K; Hatanaka N; Asahi S; Shimada N; Guengerich FP; Shimada T; Nakajima M; Yokoi T Protein Expr Purif; 2002 Apr; 24(3):329-37. PubMed ID: 11922748 [TBL] [Abstract][Full Text] [Related]
6. Human enzymes involved in the metabolic activation of the environmental contaminant 3-nitrobenzanthrone: evidence for reductive activation by human NADPH:cytochrome p450 reductase. Arlt VM; Stiborova M; Hewer A; Schmeiser HH; Phillips DH Cancer Res; 2003 Jun; 63(11):2752-61. PubMed ID: 12782579 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of ferric cytochrome P450 reduction by NADPH-cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems. Guengerich FP; Johnson WW Biochemistry; 1997 Dec; 36(48):14741-50. PubMed ID: 9398194 [TBL] [Abstract][Full Text] [Related]
8. Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. II. Kinetic parameters of reductase and monooxygenase reactions. Kanaeva IP; Nikityuk OV; Davydov DR; Dedinskii IR; Koen YM; Kuznetsova GP; Skotselyas ED; Bachmanova GI; Archakov AI Arch Biochem Biophys; 1992 Nov; 298(2):403-12. PubMed ID: 1416971 [TBL] [Abstract][Full Text] [Related]
9. Dynamic interactions of rabbit liver cytochromes P450IA2 and P450IIB4 with cytochrome b5 and NADPH-cytochrome P450 reductase in proteoliposomes. Yamada M; Ohta Y; Bachmanova GI; Nishimoto Y; Archakov AI; Kawato S Biochemistry; 1995 Aug; 34(32):10113-9. PubMed ID: 7640265 [TBL] [Abstract][Full Text] [Related]
10. Comparative study of monomeric reconstituted and membrane microsomal monooxygenase systems of the rabbit liver. I. Properties of NADPH-cytochrome P450 reductase and cytochrome P450 LM2 (2B4) monomers. Kanaeva IP; Dedinskii IR; Skotselyas ED; Krainev AG; Guleva IV; Sevryukova IF; Koen YM; Kuznetsova GP; Bachmanova GI; Archakov AI Arch Biochem Biophys; 1992 Nov; 298(2):395-402. PubMed ID: 1416970 [TBL] [Abstract][Full Text] [Related]
11. Cytochrome P450 Organization and Function Are Modulated by Endoplasmic Reticulum Phospholipid Heterogeneity. Brignac-Huber LM; Park JW; Reed JR; Backes WL Drug Metab Dispos; 2016 Dec; 44(12):1859-1866. PubMed ID: 27233287 [TBL] [Abstract][Full Text] [Related]
12. A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of interactions of twelve cytochrome P450 isoforms and their redox partners. Yablokov EO; Sushko TA; Ershov PV; Florinskaya AV; Gnedenko OV; Shkel TV; Grabovec IP; Strushkevich NV; Kaluzhskiy LA; Usanov SA; Gilep AA; Ivanov AS Biochimie; 2019 Jul; 162():156-166. PubMed ID: 31034920 [TBL] [Abstract][Full Text] [Related]
13. Requirements for cytochrome b5 in the oxidation of 7-ethoxycoumarin, chlorzoxazone, aniline, and N-nitrosodimethylamine by recombinant cytochrome P450 2E1 and by human liver microsomes. Yamazaki H; Nakano M; Gillam EM; Bell LC; Guengerich FP; Shimada T Biochem Pharmacol; 1996 Jul; 52(2):301-9. PubMed ID: 8694855 [TBL] [Abstract][Full Text] [Related]
14. NADPH-flavodoxin reductase and flavodoxin from Escherichia coli: characteristics as a soluble microsomal P450 reductase. Jenkins CM; Waterman MR Biochemistry; 1998 Apr; 37(17):6106-13. PubMed ID: 9558349 [TBL] [Abstract][Full Text] [Related]
15. Formation of P450 · P450 complexes and their effect on P450 function. Reed JR; Backes WL Pharmacol Ther; 2012 Mar; 133(3):299-310. PubMed ID: 22155419 [TBL] [Abstract][Full Text] [Related]
16. Differential effect of copper (II) on the cytochrome P450 enzymes and NADPH-cytochrome P450 reductase: inhibition of cytochrome P450-catalyzed reactions by copper (II) ion. Kim JS; Ahn T; Yim SK; Yun CH Biochemistry; 2002 Jul; 41(30):9438-47. PubMed ID: 12135366 [TBL] [Abstract][Full Text] [Related]
17. Fluorescence resonance energy transfer analysis of cytochromes P450 2C2 and 2E1 molecular interactions in living cells. Szczesna-Skorupa E; Mallah B; Kemper B J Biol Chem; 2003 Aug; 278(33):31269-76. PubMed ID: 12766165 [TBL] [Abstract][Full Text] [Related]
18. The use of liposomes in the study of drug metabolism: a method to incorporate the enzymes of the cytochrome p450 monooxygenase system into phospholipid, bilayer vesicles. Reed JR Methods Mol Biol; 2010; 606():11-20. PubMed ID: 20013386 [TBL] [Abstract][Full Text] [Related]
19. Microsomal cytochrome P450 2C5: comparison to microbial P450s and unique features. Williams PA; Cosme J; Sridhar V; Johnson EF; McRee DE J Inorg Biochem; 2000 Aug; 81(3):183-90. PubMed ID: 11051563 [TBL] [Abstract][Full Text] [Related]
20. Microsomal cytochrome P450 1A1 dependent monooxygenase activity in guinea pig heart: induction, inhibition, and increased activity by addition of exogenous NADPH-cytochrome P450 reductase. McCallum GP; Horton JE; Falkner KC; Bend JR Can J Physiol Pharmacol; 1993 Feb; 71(2):151-6. PubMed ID: 8319138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]