These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12727243)

  • 1. Treatment of trichlorophenol by catalytic oxidation process.
    Chu W; Law CK
    Water Res; 2003 May; 37(10):2339-46. PubMed ID: 12727243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactor model development: the removal performance of ferrous-catalysed photo-oxidation process by examining the reaction parameters.
    Chan KH; Chu W
    J Hazard Mater; 2009 Aug; 167(1-3):199-204. PubMed ID: 19185422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the reaction kinetics of Fenton's process on the removal of atrazine.
    Chan KH; Chu W
    Chemosphere; 2003 Apr; 51(4):305-11. PubMed ID: 12604082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts.
    Chaliha S; Bhattacharyya KG
    J Hazard Mater; 2008 Feb; 150(3):728-36. PubMed ID: 17574332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A disappearance model for the prediction of trichlorophenol ozonation.
    Chu W; Wong CC
    Chemosphere; 2003 Apr; 51(4):289-94. PubMed ID: 12604080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model applications and mechanism study on the degradation of atrazine by Fenton's system.
    Chan KH; Chu W
    J Hazard Mater; 2005 Feb; 118(1-3):227-37. PubMed ID: 15721548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The system design of atrazine oxidation by catalytic oxidation process through a kinetic approach.
    Chan KH; Chu W
    Water Res; 2003 Sep; 37(16):3997-4003. PubMed ID: 12909119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The system design of UV-assisted catalytic oxidation process--degradation of 2,4-D.
    Chu W; Chan KH; Kwan CY; Lee CK
    Chemosphere; 2004 Oct; 57(3):171-8. PubMed ID: 15312733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observations of 2,4,6-trichlorophenol degradation by ozone.
    Graham N; Chu W; Lau C
    Chemosphere; 2003 Apr; 51(4):237-43. PubMed ID: 12604075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the generation of hydroxyl radicals and their oxidative role in the presence of heterogeneous copper catalysts.
    Kim JK; Metcalfe IS
    Chemosphere; 2007 Oct; 69(5):689-96. PubMed ID: 17604820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wet peroxide oxidation of chlorophenols.
    García-Molina V; López-Arias M; Florczyk M; Chamarro E; Esplugas S
    Water Res; 2005 Mar; 39(5):795-802. PubMed ID: 15743624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition effect of chlorine ion on hydroxyl radical generation in UV-H2O2 process.
    Tsuneda S; Ishihara Y; Hamachi M; Hirata A
    Water Sci Technol; 2002; 46(11-12):33-8. PubMed ID: 12523729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols.
    Rastogi A; Al-Abed SR; Dionysiou DD
    Water Res; 2009 Feb; 43(3):684-94. PubMed ID: 19038413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent destruction strategy: NaNO2-catalyzed, trichlorophenol-coupled degradation of p-nitrophenol using molecular oxygen.
    Fu D; Peng Y; Liu R; Zhang F; Liang X
    Chemosphere; 2009 May; 75(6):701-6. PubMed ID: 19272631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons.
    Huang HH; Lu MC; Chen JN; Lee CT
    Chemosphere; 2003 Jun; 51(9):935-43. PubMed ID: 12697184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kinetic study of 3-chlorophenol enhanced hydroxyl radical generation during ozonation.
    Utsumi H; Han YH; Ichikawa K
    Water Res; 2003 Dec; 37(20):4924-8. PubMed ID: 14604638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions.
    Kojima Y; Fukuta T; Yamada T; Onyango MS; Bernardo EC; Matsuda H; Yagishita K
    Water Res; 2005 Jan; 39(1):29-36. PubMed ID: 15607161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative degradation of dimethylsulfoxide by locally concentrated hydroxyl radicals in streamer corona discharge process.
    Lee C; Lee Y; Yoon J
    Chemosphere; 2006 Nov; 65(7):1163-70. PubMed ID: 16697030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horse heart myoglobin catalyzes the H2O2-dependent oxidative dehalogenation of chlorophenols to DNA-binding radicals and quinones.
    Osborne RL; Coggins MK; Walla M; Dawson JH
    Biochemistry; 2007 Aug; 46(34):9823-9. PubMed ID: 17676875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified Fenton reaction for trichlorophenol dechlorination by enzymatically generated H2O2 and gluconic acid chelate.
    Ahuja DK; Bachas LG; Bhattacharyya D
    Chemosphere; 2007 Feb; 66(11):2193-200. PubMed ID: 17166556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.