BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12727283)

  • 1. Kinetic analysis of artificial peptide self-replication. Part II: the heterochiral case.
    Islas JR; Pimienta V; Micheau JC; Buhse T
    Biophys Chem; 2003 Mar; 103(3):201-11. PubMed ID: 12727283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of artificial peptide self-replication. Part I: the homochiral case.
    Islas JR; Pimienta V; Micheau JC; Buhse T
    Biophys Chem; 2003 Mar; 103(3):191-200. PubMed ID: 12727282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chiroselective peptide replicator.
    Saghatelian A; Yokobayashi Y; Soltani K; Ghadiri MR
    Nature; 2001 Feb; 409(6822):797-801. PubMed ID: 11236988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of self-replicating peptides: possibility of chiral amplification in open systems.
    Rivera Islas J; Micheau JC; Buhse T
    Orig Life Evol Biosph; 2004 Oct; 34(5):497-512. PubMed ID: 15573499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental investigation of the evolution of chirality in a potential dynamic peptide system: N-terminal epimerization and degradation into diketopiperazine.
    Danger G; Plasson R; Pascal R
    Astrobiology; 2010; 10(6):651-62. PubMed ID: 20735255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of chirality and enantioselectivity in the asymmetric autocatalytic Soai reaction.
    Schiaffino L; Ercolani G
    Chemphyschem; 2009 Oct; 10(14):2508-15. PubMed ID: 19708050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-racemic mixture model: a computational approach.
    Polanco C; Buhse T
    Acta Biochim Pol; 2017; 64(1):17-19. PubMed ID: 27741325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution.
    Weber AL; Pizzarello S
    Proc Natl Acad Sci U S A; 2006 Aug; 103(34):12713-7. PubMed ID: 16905650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study of ground-state chiral induction in small peptides: comparison of the relative stability of selected amino acid dimers and oligomers in homochiral and heterochiral combinations.
    Zhou Y; Oostenbrink C; Jongejan A; Van Gunsteren WF; Hagen WR; De Leeuw SW; Jongejan JA
    J Comput Chem; 2006 May; 27(7):857-67. PubMed ID: 16541426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primordial evolvability: Impasses and challenges.
    Vasas V; Fernando C; Szilágyi A; Zachár I; Santos M; Szathmáry E
    J Theor Biol; 2015 Sep; 381():29-38. PubMed ID: 26165453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of composition on the dynamics of autocatalytic sets.
    Ravoni A
    Biosystems; 2020 Dec; 198():104250. PubMed ID: 32927011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of homochiral peptides in the chemical evolutionary process: Separation of homochiral and heterochiral oligopeptides.
    Munegumi T; Shimoyama A
    Chirality; 2003; 15 Suppl():S108-15. PubMed ID: 12884382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An extended model for the evolution of prebiotic homochirality: a bottom-up approach to the origin of life.
    Gleiser M; Walker SI
    Orig Life Evol Biosph; 2008 Aug; 38(4):293-315. PubMed ID: 18465201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous emergence of homochirality via coherently coupled antagonistic and reversible reaction cycles.
    Mauksch M; Tsogoeva SB
    Chemphyschem; 2008 Nov; 9(16):2359-71. PubMed ID: 18942050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interparticle chiral recognition of enantiomers: a nanoparticle-based regulation strategy.
    Lim II; Mott D; Engelhard MH; Pan Y; Kamodia S; Luo J; Njoki PN; Zhou S; Wang L; Zhong CJ
    Anal Chem; 2009 Jan; 81(2):689-98. PubMed ID: 19072589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graded Autocatalysis Replication Domain (GARD): kinetic analysis of self-replication in mutually catalytic sets.
    Segre D; Lancet D; Kedem O; Pilpel Y
    Orig Life Evol Biosph; 1998 Oct; 28(4-6):501-14. PubMed ID: 11536890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous emergence of chirality in the limited enantioselectivity model: autocatalytic cycle driven by an external reagent.
    Blanco C; Crusats J; El-Hachemi Z; Moyano A; Hochberg D; Ribó JM
    Chemphyschem; 2013 Aug; 14(11):2432-40. PubMed ID: 23821539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demystifying the asymmetry-amplifying, autocatalytic behaviour of the Soai reaction through structural, mechanistic and computational studies.
    Athavale SV; Simon A; Houk KN; Denmark SE
    Nat Chem; 2020 Apr; 12(4):412-423. PubMed ID: 32203445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational design of heterochiral peptides against a helical target.
    Nanda V; DeGrado WF
    J Am Chem Soc; 2006 Jan; 128(3):809-16. PubMed ID: 16417370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Universal motifs and the diversity of autocatalytic systems.
    Blokhuis A; Lacoste D; Nghe P
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25230-25236. PubMed ID: 32989134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.