BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12727286)

  • 1. Cytochrome c location in phosphatidylcholine/cardiolipin model membranes: resonance energy transfer study.
    Gorbenko GP; Domanov YA
    Biophys Chem; 2003 Mar; 103(3):239-49. PubMed ID: 12727286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance energy transfer study of hemoglobin and cytochrome c complexes with lipids.
    Gorbenko GP
    Biochim Biophys Acta; 1998 Nov; 1409(1):12-24. PubMed ID: 9804870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coverage-dependent changes of cytochrome c transverse location in phospholipid membranes revealed by FRET.
    Domanov YA; Molotkovsky JG; Gorbenko GP
    Biochim Biophys Acta; 2005 Oct; 1716(1):49-58. PubMed ID: 16183372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochrome C interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation.
    Gorbenko GP; Molotkovsky JG; Kinnunen PK
    Biophys J; 2006 Jun; 90(11):4093-103. PubMed ID: 16565064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location of novel benzanthrone dyes in model membranes as revealed by resonance energy transfer.
    Zhytniakivska O; Trusova V; Gorbenko G; Kirilova E; Kalnina I; Kirilov G; Molotkovsky J; Tulkki J; Kinnunen P
    J Fluoresc; 2014 May; 24(3):899-907. PubMed ID: 24596055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance energy transfer study of hemoglobin complexes with model phospholipid membranes.
    Gorbenko GP
    Biophys Chem; 1999 Oct; 81(2):93-105. PubMed ID: 10515045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of cytochrome c complexes with phospholipids as revealed by resonance energy transfer.
    Gorbenko GP
    Biochim Biophys Acta; 1999 Aug; 1420(1-2):1-13. PubMed ID: 10446285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Förster Resonance Energy Transfer Study of Cytochrome c-Lipid Interactions.
    Gorbenko GP; Trusova V; Molotkovsky JG
    J Fluoresc; 2018 Jan; 28(1):79-88. PubMed ID: 28879486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study of model protein-lipid systems by the energy transfer method].
    Gorbenko GP
    Biofizika; 2000; 45(1):58-64. PubMed ID: 10732211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes.
    Salamon Z; Tollin G
    Biophys J; 1996 Aug; 71(2):858-67. PubMed ID: 8842224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. I. Binding of cytochrome c to cardiolipin/phosphatidylcholine membranes in the absence of oxidase.
    Salamon Z; Tollin G
    Biophys J; 1996 Aug; 71(2):848-57. PubMed ID: 8842223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome c-lipid interactions: new insights from resonance energy transfer.
    Trusova VM; Gorbenko GP; Molotkovsky JG; Kinnunen PK
    Biophys J; 2010 Sep; 99(6):1754-63. PubMed ID: 20858419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization and dynamics of NBD-labeled lipids in lipid bilayer analyzed by FRET using the small membrane fluorescent probe AHBA as donor.
    Marquezin CA; Ito AS; de Souza ES
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182995. PubMed ID: 31136733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes.
    Rytömaa M; Mustonen P; Kinnunen PK
    J Biol Chem; 1992 Nov; 267(31):22243-8. PubMed ID: 1331048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of resonance energy transfer in model membranes: role of orientational effects.
    Domanov YA; Gorbenko GP
    Biophys Chem; 2002 Oct; 99(2):143-54. PubMed ID: 12377365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic and mechanical properties of model mitochondrial membranes.
    Nichols-Smith S; Teh SY; Kuhl TL
    Biochim Biophys Acta; 2004 May; 1663(1-2):82-8. PubMed ID: 15157610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics in a protein-lipid complex: nuclear magnetic resonance measurements on the headgroup of cardiolipin when bound to cytochrome c.
    Spooner PJ; Duralski AA; Rankin SE; Pinheiro TJ; Watts A
    Biophys J; 1993 Jul; 65(1):106-12. PubMed ID: 8396450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochrome c interactions with cardiolipin in bilayers: a multinuclear magic-angle spinning NMR study.
    Spooner PJ; Watts A
    Biochemistry; 1992 Oct; 31(41):10129-38. PubMed ID: 1327134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel benzanthrone aminoderivatives for membrane studies.
    Trusova VM; Kirilova E; Kalnina I; Kirilov G; Zhytniakivska OA; Fedorov PV; Gorbenko GP
    J Fluoresc; 2012 May; 22(3):953-9. PubMed ID: 22218973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric field-induced critical demixing in lipid bilayer membranes.
    Groves JT; Boxer SG; McConnell HM
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):935-8. PubMed ID: 9448263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.