BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 12727286)

  • 41. Phospholipid headgroup-headgroup electrostatic interactions in mixed bilayers of cardiolipin with phosphatidylcholines studied by 2H NMR.
    Pinheiro TJ; Duralski AA; Watts A
    Biochemistry; 1994 Apr; 33(16):4896-902. PubMed ID: 8161549
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interaction of cytochrome c with cardiolipin: an infrared spectroscopic study.
    Choi S; Swanson JM
    Biophys Chem; 1995 May; 54(3):271-8. PubMed ID: 7749061
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calcium-induced changes in permeability of dioleoylphosphatidylcholine model membranes containing bovine heart cardiolipin.
    Smaal EB; Schreuder C; van Baal JB; Tijburg PN; Mandersloot JG; de Kruijff B; de Gier J
    Biochim Biophys Acta; 1987 Feb; 897(1):191-6. PubMed ID: 3099844
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation.
    Shidoji Y; Hayashi K; Komura S; Ohishi N; Yagi K
    Biochem Biophys Res Commun; 1999 Oct; 264(2):343-7. PubMed ID: 10529366
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytochrome c Complexes with Cardiolipin Monolayer Formed under Different Surface Pressure.
    Marchenkova MA; Dyakova YA; Tereschenko EY; Kovalchuk MV; Vladimirov YA
    Langmuir; 2015 Nov; 31(45):12426-36. PubMed ID: 26488458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy transfer method in membrane studies: some theoretical and practical aspects.
    Gorbenko GP; Domanov YA
    J Biochem Biophys Methods; 2002 Jun; 52(1):45-58. PubMed ID: 12121753
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of cytochrome c oxidase on lipid polymorphism of model membranes containing cardiolipin.
    Rietveld A; van Kemenade TJ; Hak T; Verkleij AJ; de Kruijff B
    Eur J Biochem; 1987 Apr; 164(1):137-40. PubMed ID: 3030748
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles.
    Brown LR; Wüthrich K
    Biochim Biophys Acta; 1977 Aug; 468(3):389-410. PubMed ID: 195609
    [No Abstract]   [Full Text] [Related]  

  • 49. ESR spin-label studies of lipid-protein interactions in membranes.
    Marsh D; Watts A; Pates RD; Uhl R; Knowles PF; Esmann M
    Biophys J; 1982 Jan; 37(1):265-74. PubMed ID: 6275924
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reversibility of the binding of cytochrome c to liposomes. Implications for lipid-protein interactions.
    Rytömaa M; Kinnunen PK
    J Biol Chem; 1995 Feb; 270(7):3197-202. PubMed ID: 7852404
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorescence energy transfer reveals microdomain formation at physiological temperatures in lipid mixtures modeling the outer leaflet of the plasma membrane.
    Silvius JR
    Biophys J; 2003 Aug; 85(2):1034-45. PubMed ID: 12885650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantum chemical modeling of the cardiolipin headgroup.
    Dahlberg M; Marini A; Mennucci B; Maliniak A
    J Phys Chem A; 2010 Apr; 114(12):4375-87. PubMed ID: 20187622
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phospholipid composition and organization of cytochrome c oxidase preparations as determined by 31P-nuclear magnetic resonance.
    Seelig A; Seelig J
    Biochim Biophys Acta; 1985 May; 815(2):153-8. PubMed ID: 2986692
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Resonance energy transfer study of lysozyme-lipid interactions.
    Gorbenko GP; Ioffe VM; Molotkovsky JG; Kinnunen PK
    Biochim Biophys Acta; 2008 May; 1778(5):1213-21. PubMed ID: 17963687
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Resonance energy transfer study of peptide-lipid complexes.
    Gorbenko G; Saito H; Molotkovsky J; Tanaka M; Egashira M; Nakano M; Handa T
    Biophys Chem; 2001 Sep; 92(3):155-68. PubMed ID: 11583833
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of cardiolipin on membrane morphology: a Langmuir monolayer study.
    Phan MD; Shin K
    Biophys J; 2015 Apr; 108(8):1977-86. PubMed ID: 25902437
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phospholipase digestion of bound cardiolipin reversibly inactivates bovine cytochrome bc1.
    Gomez B; Robinson NC
    Biochemistry; 1999 Jul; 38(28):9031-8. PubMed ID: 10413476
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.
    Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A
    Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Atomic force microscopy characterization of supported planar bilayers that mimic the mitochondrial inner membrane.
    Domènech O; Redondo L; Picas L; Morros A; Montero MT; Hernández-Borrell J
    J Mol Recognit; 2007; 20(6):546-53. PubMed ID: 17907278
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cytochromes: Reactivity of the "dark side" of the heme.
    Ascenzi P; Santucci R; Coletta M; Polticelli F
    Biophys Chem; 2010 Nov; 152(1-3):21-7. PubMed ID: 20952122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.