These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 12727510)

  • 1. New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins.
    Brüschweiler R
    Curr Opin Struct Biol; 2003 Apr; 13(2):175-83. PubMed ID: 12727510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.
    Prompers JJ; Brüschweiler R
    J Am Chem Soc; 2002 Apr; 124(16):4522-34. PubMed ID: 11960483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An overview of recent developments in the interpretation and prediction of fast internal protein dynamics.
    Nodet G; Abergel D
    Eur Biophys J; 2007 Nov; 36(8):985-93. PubMed ID: 17562038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in solid-state relaxation methodology for probing site-specific protein dynamics.
    Lewandowski JR
    Acc Chem Res; 2013 Sep; 46(9):2018-27. PubMed ID: 23621579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Protein ps-ns Motions by High-Resolution Relaxometry.
    Cousin SF; Kadeřávek P; Bolik-Coulon N; Ferrage F
    Methods Mol Biol; 2018; 1688():169-203. PubMed ID: 29151210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual dipolar couplings in NMR structure analysis.
    Lipsitz RS; Tjandra N
    Annu Rev Biophys Biomol Struct; 2004; 33():387-413. PubMed ID: 15139819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theory of protein dynamics to predict NMR relaxation.
    Caballero-Manrique E; Bray JK; Deutschman WA; Dahlquist FW; Guenza MG
    Biophys J; 2007 Dec; 93(12):4128-40. PubMed ID: 17766356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory and practice of nuclear spin relaxation in proteins.
    Dayie KT; Wagner G; Lefèvre JF
    Annu Rev Phys Chem; 1996; 47():243-82. PubMed ID: 8930100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds.
    Krushelnitsky A; Reichert D; Saalwächter K
    Acc Chem Res; 2013 Sep; 46(9):2028-36. PubMed ID: 23875699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations.
    Bernadó P; Fernandes MX; Jacobs DM; Fiebig K; García de la Torre J; Pons M
    J Biomol NMR; 2004 May; 29(1):21-35. PubMed ID: 15017137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isotropic reorientational eigenmode dynamics complements NMR relaxation measurements for RNA.
    Showalter SA; Hall KB
    Methods Enzymol; 2005; 394():465-80. PubMed ID: 15808233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein structural class identification directly from NMR spectra using averaged chemical shifts.
    Mielke SP; Krishnan VV
    Bioinformatics; 2003 Nov; 19(16):2054-64. PubMed ID: 14594710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reorientational contact-weighted elastic network model for the prediction of protein dynamics: comparison with NMR relaxation.
    Ming D; Brüschweiler R
    Biophys J; 2006 May; 90(10):3382-8. PubMed ID: 16500967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR.
    McDermott A
    Annu Rev Biophys; 2009; 38():385-403. PubMed ID: 19245337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in (15)N NMR relaxation studies that probe protein backbone dynamics.
    Ishima R
    Top Curr Chem; 2012; 326():99-122. PubMed ID: 21898206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of NMR relaxation-active motions of a partially folded A-state analogue of ubiquitin.
    Prompers JJ; Scheurer C; Brüschweiler R
    J Mol Biol; 2001 Feb; 305(5):1085-97. PubMed ID: 11162116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reorientational eigenmode dynamics: a combined MD/NMR relaxation analysis method for flexible parts in globular proteins.
    Prompers JJ; Brüschweiler R
    J Am Chem Soc; 2001 Aug; 123(30):7305-13. PubMed ID: 11472158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic resolution conformational dynamics of intrinsically disordered proteins from NMR spin relaxation.
    Salvi N; Abyzov A; Blackledge M
    Prog Nucl Magn Reson Spectrosc; 2017 Nov; 102-103():43-60. PubMed ID: 29157493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-state nuclear magnetic resonance spectroscopy and protein folding.
    Cabrita LD; Waudby CA; Dobson CM; Christodoulou J
    Methods Mol Biol; 2011; 752():97-120. PubMed ID: 21713633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.