These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12727550)

  • 1. Understanding cardiovascular physiology in zebrafish and Xenopus larvae: the use of microtechniques.
    Schwerte T; Fritsche R
    Comp Biochem Physiol A Mol Integr Physiol; 2003 May; 135(1):131-45. PubMed ID: 12727550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studying vascular development in the zebrafish.
    Vogel AM; Weinstein BM
    Trends Cardiovasc Med; 2000 Nov; 10(8):352-60. PubMed ID: 11369262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular cell biology in vivo: a new piscine paradigm?
    Weinstein B
    Trends Cell Biol; 2002 Sep; 12(9):439-45. PubMed ID: 12220865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A three-dimensional functional assessment of heart and vessel development in the larva of the zebrafish (Danio rerio).
    Bagatto B; Burggren W
    Physiol Biochem Zool; 2006; 79(1):194-201. PubMed ID: 16380941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Techniques for the in vivo assessment of cardio-renal function in zebrafish (Danio rerio) larvae.
    Rider SA; Tucker CS; del-Pozo J; Rose KN; MacRae CA; Bailey MA; Mullins JJ
    J Physiol; 2012 Apr; 590(8):1803-9. PubMed ID: 22331420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development.
    Isogai S; Horiguchi M; Weinstein BM
    Dev Biol; 2001 Feb; 230(2):278-301. PubMed ID: 11161578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. reg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins.
    Huang CC; Lawson ND; Weinstein BM; Johnson SL
    Dev Biol; 2003 Dec; 264(1):263-74. PubMed ID: 14623247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution cardiovascular function confirms functional orthology of myocardial contractility pathways in zebrafish.
    Shin JT; Pomerantsev EV; Mably JD; MacRae CA
    Physiol Genomics; 2010 Jul; 42(2):300-9. PubMed ID: 20388839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental plasticity in the cardiovascular system of fish, with special reference to the zebrafish.
    Pelster B
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Nov; 133(3):547-53. PubMed ID: 12443913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular parameters continue to decrease post-exposure with simultaneous, but not individual exposure to BPA and hypoxia in zebrafish larvae.
    Cypher AD; Fetterman B; Bagatto B
    Comp Biochem Physiol C Toxicol Pharmacol; 2018 Apr; 206-207():11-16. PubMed ID: 29454160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation of sequence and expression of Xenopus and zebrafish dHAND during cardiac, branchial arch and lateral mesoderm development.
    Angelo S; Lohr J; Lee KH; Ticho BS; Breitbart RE; Hill S; Yost HJ; Srivastava D
    Mech Dev; 2000 Jul; 95(1-2):231-7. PubMed ID: 10906469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiovascular and respiratory developmental plasticity under oxygen depleted environment and in genetically hypoxic zebrafish (Danio rerio).
    Yaqoob N; Schwerte T
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Aug; 156(4):475-84. PubMed ID: 20363352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zebrafish and Xenopus tadpoles: small animal models to study angiogenesis and lymphangiogenesis.
    Ny A; Autiero M; Carmeliet P
    Exp Cell Res; 2006 Mar; 312(5):684-93. PubMed ID: 16309670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The heart and circulatory system--a review.
    Bryant M
    J Nephrol Nurs; 1984; 1(3):130, 159. PubMed ID: 6569077
    [No Abstract]   [Full Text] [Related]  

  • 15. A multi-endpoint in vivo larval zebrafish (Danio rerio) model for the assessment of integrated cardiovascular function.
    Parker T; Libourel PA; Hetheridge MJ; Cumming RI; Sutcliffe TP; Goonesinghe AC; Ball JS; Owen SF; Chomis Y; Winter MJ
    J Pharmacol Toxicol Methods; 2014; 69(1):30-8. PubMed ID: 24140389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fishing for novel angiogenic therapies.
    Kidd KR; Weinstein BM
    Br J Pharmacol; 2003 Oct; 140(4):585-94. PubMed ID: 14534143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What guides early embryonic blood vessel formation?
    Weinstein BM
    Dev Dyn; 1999 May; 215(1):2-11. PubMed ID: 10340752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cardio-respiratory control during early development in the model animal zebrafish.
    Schwerte T
    Acta Histochem; 2009; 111(3):230-43. PubMed ID: 19121852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae.
    Malone MH; Sciaky N; Stalheim L; Hahn KM; Linney E; Johnson GL
    BMC Biotechnol; 2007 Jul; 7():40. PubMed ID: 17623073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic variations in early cardiovascular performance and hematopoiesis can be explained by maternal and clutch effects in developing zebrafish (Danio rerio).
    Schwerte T; Voigt S; Pelster B
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Jun; 141(2):200-9. PubMed ID: 15964229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.