These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12729157)

  • 1. Age-dependent effect of limb immobilization and remobilization on rat bone.
    Trebacz H; Dmowska M; Baj J
    Folia Biol (Krakow); 2002; 50(3-4):121-7. PubMed ID: 12729157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of immobilization, three forms of remobilization, and subsequent deconditioning on bone mineral content and density in rat femora.
    Kannus P; Järvinen TL; Sievänen H; Kvist M; Rauhaniemi J; Maunu VM; Hurme T; Jozsa L; Järvinen M
    J Bone Miner Res; 1996 Sep; 11(9):1339-46. PubMed ID: 8864909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-point bending and acoustic emission study of adult rat femora after immobilization and free remobilization.
    Trebacz H; Zdunek A
    J Biomech; 2006; 39(2):237-45. PubMed ID: 16321625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disuse-induced deterioration of bone strength is not stopped after free remobilization in young adult rats.
    Trebacz H
    J Biomech; 2001 Dec; 34(12):1631-6. PubMed ID: 11716865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of free mobilization and low- to high-intensity treadmill running on the immobilization-induced bone loss in rats.
    Kannus P; Sievänen H; Järvinen TL; Järvinen M; Kvist M; Oja P; Vuori I; Jozsa L
    J Bone Miner Res; 1994 Oct; 9(10):1613-9. PubMed ID: 7817808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of cancellous bone to overloading in the adult rat: a single photon absorptiometry and histomorphometry study.
    Jee WS; Li XJ
    Anat Rec; 1990 Aug; 227(4):418-26. PubMed ID: 2393095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation of cancellous bone to aging and immobilization in the rat: a single photon absorptiometry and histomorphometry study.
    Li XJ; Jee WS; Chow SY; Woodbury DM
    Anat Rec; 1990 May; 227(1):12-24. PubMed ID: 2195916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Changes in bone strength during convalescence after immobilization induces bone loss--experiment with adult rats].
    Trebacz H
    Chir Narzadow Ruchu Ortop Pol; 2003; 68(3):197-201. PubMed ID: 14564799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation of diaphyseal structure to aging and decreased mechanical loading in the adult rat: a densitometric and histomorphometric study.
    Li XJ; Jee WS
    Anat Rec; 1991 Mar; 229(3):291-7. PubMed ID: 2024773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of osteocalcin in the patella of experimentally immobilized and remobilized rats.
    Kannus P; Jozsa L; Kvist M; Järvinen TL; Maunu VM; Hurme T; Järvinen M
    J Bone Miner Res; 1996 Jan; 11(1):79-87. PubMed ID: 8770700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of mineral phase in immobilized rat femur: structure refinements by Rietveld analysis.
    Trebacz H; Pikus S
    J Bone Miner Metab; 2003; 21(2):80-5. PubMed ID: 12601571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of swimming training and free mobilization on bone mineral densities of rats with the immobilization-induced osteopenia.
    Karatosun H; Erdogan A; Yildiz M; Akgun C; Cetin C
    Saudi Med J; 2006 Mar; 27(3):312-6. PubMed ID: 16532089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The effect of free and forced remobilization on the mineral content and distribution in previously immobilized long bones].
    Józsa L; Kannus P
    Magy Traumatol Ortop Kezseb Plasztikai Seb; 1994; 37(1):79-83. PubMed ID: 8162143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of diaphyseal structure with aging and increased mechanical usage in the adult rat: a histomorphometrical and biomechanical study.
    Jee WS; Li XJ; Schaffler MB
    Anat Rec; 1991 Jul; 230(3):332-8. PubMed ID: 1867408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of remobilization on rat femur are dose-dependent.
    Järvinen TL; Kannus P; Sievänen H; Józsa L; Heinonen OJ; Vieno T; Järvinen M
    Scand J Med Sci Sports; 2001 Oct; 11(5):292-8. PubMed ID: 11696214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mineral distribution in rat skeletons after exposure to a microgravity model.
    Arnaud SB; Harper JS; Navidi M
    J Gravit Physiol; 1995; 2(1):P115-6. PubMed ID: 11538889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro anti-resorptive activity and prevention of ovariectomy-induced osteoporosis in female Sprague-Dawley rats by ormeloxifene, a selective estrogen receptor modulator.
    Arshad M; Sengupta S; Sharma S; Ghosh R; Sawlani V; Singh MM
    J Steroid Biochem Mol Biol; 2004 Jun; 91(1-2):67-78. PubMed ID: 15261309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of single hind-limb immobilization on the contralateral limb in the rat: a morphometric and biochemical study.
    Cohen I; Bogin E; Chechick A; Rzetelny V
    Am J Orthop (Belle Mead NJ); 1999 Dec; 28(12):706-8. PubMed ID: 10614762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of training on the recovery from immobilization-induced bone loss in rats.
    Tuukkanen J; Peng Z; Väänänen HK
    Acta Physiol Scand; 1992 Aug; 145(4):407-11. PubMed ID: 1529727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological effects of tiludronate in horses after long-term immobilization.
    Delguste C; Amory H; Doucet M; Piccot-Crézollet C; Thibaud D; Garnero P; Detilleux J; Lepage OM
    Bone; 2007 Sep; 41(3):414-21. PubMed ID: 17604709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.