BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 12729616)

  • 21. Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: an ESR study.
    Takahashi N; Schreiber J; Fischer V; Mason RP
    Arch Biochem Biophys; 1987 Jan; 252(1):41-8. PubMed ID: 3028260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of membrane charge and semiquinone structure on naphthosemiquinone derivatives and 1,4-benzosemiquinone disproportionation and membrane-buffer distribution coefficients.
    Alegría AE; Santiago G; Lópes M; Rosario BI; Cordones E
    Free Radic Res; 2001 Nov; 35(5):529-41. PubMed ID: 11767411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electron transfer from aromatic amino acids to triplet quinones.
    Görner H
    J Photochem Photobiol B; 2007 Sep; 88(2-3):83-9. PubMed ID: 17604179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The tiron free radical as a sensitive indicator of chloroplastic photoautoxidation.
    Miller RW; Macdowall FD
    Biochim Biophys Acta; 1975 Apr; 387(1):176-87. PubMed ID: 164939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thiol oxidation coupled to DT-diaphorase-catalysed reduction of diaziquone. Reductive and oxidative pathways of diaziquone semiquinone modulated by glutathione and superoxide dismutase.
    Ordoñez ID; Cadenas E
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):481-90. PubMed ID: 1530580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding modes in metal ion complexes of quinones and semiquinone radical anions: electron-transfer reactivity.
    Yuasa J; Suenobu T; Fukuzumi S
    Chemphyschem; 2006 Apr; 7(4):942-54. PubMed ID: 16521156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nature of electrogenerated intermediates in nitro-substituted nor-β-lapachones: the structure of radical species during successive electron transfer in multiredox centers.
    Armendáriz-Vidales G; Hernández-Muñoz LS; González FJ; de Souza AA; de Abreu FC; Jardim GA; da Silva EN; Goulart MO; Frontana C
    J Org Chem; 2014 Jun; 79(11):5201-8. PubMed ID: 24783985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. New Aminonaphthoquinone from the Sea Urchins Strongylocentrotus pallidus and Mesocentrotus nudus.
    Vasileva EA; Mishchenko NP; Zadorozhny PA; Fedoreyev SA
    Nat Prod Commun; 2016 Jun; 11(6):821-4. PubMed ID: 27534126
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stepwise vs. concerted pathways in scandium ion-coupled electron transfer from superoxide ion to p-benzoquinone derivatives.
    Kawashima T; Ohkubo K; Fukuzumi S
    Phys Chem Chem Phys; 2011 Feb; 13(8):3344-52. PubMed ID: 21212887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photosensitization with anticancer agents. 17. EPR studies of photodynamic action of hypericin: formation of semiquinone radical and activated oxygen species on illumination.
    Diwu Z; Lown JW
    Free Radic Biol Med; 1993 Feb; 14(2):209-15. PubMed ID: 8381107
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Semiquinone radicals from oxygenated polychlorinated biphenyls: electron paramagnetic resonance studies.
    Song Y; Wagner BA; Lehmler HJ; Buettner GR
    Chem Res Toxicol; 2008 Jul; 21(7):1359-67. PubMed ID: 18549251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the application of electron paramagnetic resonance in the study of naturally occurring quinones and quinols.
    Pedersen JA
    Spectrochim Acta A Mol Biomol Spectrosc; 2002 Apr; 58(6):1257-70. PubMed ID: 11993473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radical phosphate transfer mechanism for the thiamin diphosphate- and FAD-dependent pyruvate oxidase from Lactobacillus plantarum. Kinetic coupling of intercofactor electron transfer with phosphate transfer to acetyl-thiamin diphosphate via a transient FAD semiquinone/hydroxyethyl-ThDP radical pair.
    Tittmann K; Wille G; Golbik R; Weidner A; Ghisla S; Hübner G
    Biochemistry; 2005 Oct; 44(40):13291-303. PubMed ID: 16201755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox cycling of 2-(x'-mono, -di, -trichlorophenyl)- 1, 4-benzoquinones, oxidation products of polychlorinated biphenyls.
    McLean MR; Twaroski TP; Robertson LW
    Arch Biochem Biophys; 2000 Apr; 376(2):449-55. PubMed ID: 10775433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Observation of the protonated semiquinone intermediate in isolated reaction centers from Rhodobacter sphaeroides: implications for the mechanism of electron and proton transfer in proteins.
    Graige MS; Paddock ML; Feher G; Okamura MY
    Biochemistry; 1999 Aug; 38(35):11465-73. PubMed ID: 10471298
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Free radical scavenging activities of naturally occurring and synthetic analogues of sea urchin naphthazarin pigments.
    Utkina NK; Pokhilo ND
    Nat Prod Commun; 2012 Jul; 7(7):901-4. PubMed ID: 22908577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron chelators and free radical scavengers in naturally occurring polyhydroxylated 1,4-naphthoquinones.
    Lebedev AV; Ivanova MV; Levitsky DO
    Hemoglobin; 2008; 32(1-2):165-79. PubMed ID: 18274994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical study of oxygen interaction with lapachol and its radical anions.
    Goulart MO; Falkowski P; Ossowski T; Liwo A
    Bioelectrochemistry; 2003 Apr; 59(1-2):85-7. PubMed ID: 12699823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation.
    Giulivi C; Cadenas E
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.